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bound. The addressed metrics are evaluated via their egeatues. As an application,
we show how the distributed optimization algorithm can beduw® perform collabora-
tive system identification and provide numerical experiteemder the randomized and
broadcast gossip protocols.

Second, we generalize the asymptotic consensus probleomtex metric spaces.
Under minimal connectivity assumptions, we show that ifatheiteration an agent up-
dates its state by choosing a point from a particular subdseeayeneralized convex hull
generated by the agents current state and the states ofigtshoes, then agreement is
achieved asymptotically. In addition, we give bounds ordistance between the consen-
sus point(s) and the initial values of the agents. As an egiptin example, we introduce
a probabilistic algorithm for reaching consensus of opiramd show that it in fact fits
our general framework.

Third, we discuss the linear asymptotic consensus probtena hetwork of dy-
namic agents whose communication network is modeled bydoraly switching graph.
The switching is determined by a finite state, Markov proceash topology correspond-
ing to a state of the process. We address both the cases wkatgrtamics of the agents
are expressed in continuous and discrete time. We showitllag consensus matrices
are doubly stochastic, average consensus is achieved mehae square and almost sure
senses if and only if the graph resulting from the union oppsacorresponding to the
states of the Markov process is strongly connected.

Fourth, we address the consensus-based distributed fiteang problem, where
a discrete time, linear stochastic process is observed byw#rk of sensors. We assume

that the consensus weights are known and we first proviflecigmt conditions under



which the stochastic process is detectable, i.e. for a pebioice of consensus weights
there exists a set of filtering gains such that the dynami¢seoéstimation errors (with-
out noise) are asymptotically stable. Next, we develop @idiged, sub-optimal filtering
scheme based on minimizing an upper bound on a quadratrinijteost. In the station-
ary case, we provide flicient conditions under which this scheme converges; cromdit
expressed in terms of the convergence properties of a setupled Riccati equations.
We continue by presenting a connection between the consdramed distributed linear
filter and the optimal linear filter of a Markovian jump linesystem, appropriately de-
fined. More specifically, we show that if the Markovian jumpdar system is (mean
square) detectable, then the stochastic process is ddtectader the consensus-based
distributed linear filtering scheme. We also show that thingd gains of a linear filter
for estimating the state of a Markovian jump linear systepprapriately defined, can be

used to approximate the optimal gains of the consensusiliasar filter.



GENERALIZED DISTRIBUTED CONSENSUS-BASED
ALGORITHMS FOR UNCERTAIN SYSTEMS AND NETWORKS

by

lon Matel

Dissertation submitted to the Faculty of the Graduate Sobidibe
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2010

Advisory Committee:

Professor John S. Baras, CHAumlvisor

Professor Nuno C. Martins, Co-Chaio-Advisor
Professor P.S. Krishnaprasad

Professor William S. Levine

Professor Satyandra K. Gupta, Dean’s Representative



© Copyright by
lon Matel
2010



Dedication

To my family.



Acknowledgments

| owe my gratitude to all the people who have made this thesssiple and thanks
to whom my graduate experience has been one that | will almayember. First and
foremost, | am grateful to my advisor and co-advisor, ProhnJS. Baras and Prof. Nuno
C. Martins, for their continuous support and encouragerdanng the entire period of
my graduate studies at the University of Maryland. Theirgneenthusiasm, persistence,
deep mathematical insight and expertise in various topissdiways been a constant
source of motivation for me. The fact that they foster a redeanvironment free of con-
straints, where a student is encouraged to expldferdnt research areas and problems,
allowed me to work on various problems which introduced meumerous mathematical
tools and methodologies. This involvement helped me budtt@ag mathematical back-
ground and increased my research maturity. Besides thermdadimension of Profs.
Baras and Martins, | also appreciate immensely their humiaemsion. The constant
attention, support and encouragement shown to their stsicheade me appreciate even
more the place | spent my years as a graduate student. | amgrateful to other commit-
tee members, Profs. P.S. Krishnaprasad, William S. LeumkSatyandra K. Gupta for
agreeing to serve on my committee.

During my graduate studies at the University of Maryland d lae privilege to
take classes with some exceptional teachers. | would likekke this opportunity to thank
Profs. P. S. Krishnaprasad, Steve Marcus and Andre Titsir @iedication to teaching
and the extra f€ort they always made to organize and present the courseialatean

interesting manner made the task of learning more enjoyableeir deep knowledge,



experience, intuition, relaxed style and graciousnesaradstheir students had a profound
impact.

The life of a graduate student involves dealing with bureaticissues from time
to time. 1 would like to thank Kim Edwards for heffeciency in keeping all these admin-
istrative details to an absolute minimum. | would also likghank the st of both ECE
and ISR for always trying to do their best helping students wfificial matters.

A special thanks goes to my friend and colleague George Rapgigu for his help
with the review of the manuscript and his very useful suggastfor improving it and to
Prof. Andre Tits for his recommendation on how to improve @ka3. | would also like
to thank a number of colleagues that made the long hours ioftitoe seem not so bad
after all: George Papageorgiou, Pedram Hovareshti, Ploky/Bsirkayastha, Tao Jiang,
Senni Perumal, Kiran Somasundaram, George Theodorakapd(hustubh Jain, Vahid
Tabatabaee, Ayan Roy-Chowdhury and Vladimir lvanov.

My studies and my research were supported by the A. Clark@dfd&ngineering
and by the Department of Electrical and Computer Engingerisniversity of Mary-
land, College Park under the Clark School DistinguishediGage Fellowships Program,
by the National Aeronautics and Space Administration uriCleoperative Agreements
NCCB8-235 and NAG3-2844, by the U.S. ARL under CTA Progranm@unication and
Networks Consortium under Cooperative Agreement DAAD1260011, by the US Air
Force Qfice of Scientific Research award FA9550-09-1-0538 to Gedrgih, by BAE
Systems award number W911NF-08-2-0004 and by the Defensantdd Research
Projects Agency (DARPA) award number 013641-001 to the &hsity of California -

Berkeley.



Table of Contents

List of Figures

1 Introduction
1.1 Motivation . . . . . . . . e
1.2 Contributionsofthethesis . . . . . . . . . . . . . . . ... ... ...

2 Distributed Optimization under Random Communicationdlogies

2.1 Introduction . . . . . . .. e

2.2 Problemformulation . . ... ... ... ... ... ... ... ...,
2.2.1 Communicationmodel . . .. .. .. ... ...........
2.2.2 Optimizationmodel . . ... ... .. ... .. ........

2.3 PreliminaryResults . . . .. ... .. ... .. .. ... .

2.4 MainResults-Errorbounds . . . .. ... ... o 0oL
2.4.1 Discussionoftheresults . . . .. .. ... ... ... ....

2.5 Application - Distributed System Identification . . .. .. ... ...

2.5.1 Systemidentificationmodel . . .. ... ... ... ......

2.5.2 Numerical simulations . . . . . . . .. ... ... ... ...,

3 Distributed Asymptotic Agreement Problem on Convex Me8paces

3.1 Introduction . . . . . . ...

3.2 ConvexMetricSpaces . .. . ... .. ..
3.2.1 Definitions and Results on Convex Metric Spaces . . . . . .
3.2.2 Ontheconvexhullofafiniteset . . . ... ..........

3.3 Problem formulation and statement of the mainresult .. .. .. . . . ..

3.4 Proofofthemainresult . . . . . ... ... ... ... L.
3.41 ProofofTheorem3.3.1. ... ... ... ... ........
3.4.2 ProofofCorollary3.3.1 . .. .. ... ... ... ... ...,

3.5 Distance between the consensus points and the inifiaispo. . . . . . .

3.6 Application - Asymptotic consensus of opinion
3.6.1 Geometric framework . .. .. ... ... ... ...
3.6.2 Consensus of Opinion Algorithm . . . . . ... ... ....
3.6.3 Probabilistic analysis of the consensus algorithm. .. .. . . . .
3.6.4 Numericalexample . . . . .. ... ... ... ........

4 Distributed Asymptotic Agreement Problem under Markavikandom Topolo-

gies

4.1 Introduction . . . . . . . . ..

4.2 Problem formulation and statement of the convergersdtre . . . . . .

4.3 Preliminaryresults . . . ... ... . o
4.3.1 General preliminaryresults . . . . . ... ... ........
4.3.2 Preliminary results for the case where the agentsauhycs are

expressed in discrete-time . . . . ... .. ... L.

99



4.3.3 Preliminary results for the case where the agentsauhycs are

expressed in continuous-time . . . . . . ... ... ... 116
4.4 Proof of the convergence theorem . . . . . ... ... ........ 118
4.4.1 Discrete-timecase-fhgiency . . .. .. .. .. ........ 119
4.4.2 Discrete-timecase-Necessity . . . .. ... ... ...... 121
4.4.3 Continuoustime - $kiciency . . . . . .. .. .. 121
4.4.4 Continuoustime-Necessity . . . .. ... ... ... ..... 312
45 DISCUSSION . . . . . v o o e e 123
5 Distributed Consensus-Based Linear Filtering 128
5.1 Introduction . . . . . . . . . 128
5.2 Problemformulation . . ... ... ... .. . 013
5.3 Distributed detectability . . . . .. .. .. .. ... ... .. .. ... 134
5.4 Sub-Optimal Consensus-Based Distributed linearrifije . . . . . . . . 140
5.4.1 Finite Horizon Sub-Optimal Consensus-Based Digstieith Linear
Filtering . . . . . . . . . . . 140
5.4.2 Infinite Horizon Consensus Based Distributed Fifiggri . . . . . 146
5.5 Connection with Markovian Jump Linear System stateredton . . . . 147
6 Conclusions 152
A Discrete-Time Coupled Matrix Equations 156
A.1 Properties of a special class offérence matrix equations . . . . . . .. 156
A.2 Discrete-time coupled Riccati equations . . . ... ... ......... 160
Bibliography 162

Vi



2.1
2.2

2.3
2.4

2.5
2.6
2.7

2.8

3.1
3.2
3.3
3.4
3.5

5.1

List of Figures

The sample space of therandomgr&tk) . . . . . . .. ... ... .. 40
(a) Optimalp as a function om; (b) Optimizedn as a function ofn; (c)
Optimizelem77 as a function ofm; (d) Optimizednr‘ln as a functionom. . 41
CirculargraphwitiN=8. . . . . . . . .. .. ... ... ... ..... 46
Estimates ofj, % and nn% for the randomized gossip protocol and for
N=211. . . . . @ e 49
Estimates of, 1Tmn andnr‘ln for the broadcast gossip protocol and o 11 50
Trajectory oftheobject . . . . . .. ... .. ... ... ........ 52
Estimate of ma¥[||6; x(k) — 6*|[] for the randomized and broadcast pro-
tocolgossipprotocols . . . . . . ... 53
Estimate of mapE[f(éi,x(k))] — f* for the randomized and broadcast pro-
tocolgossipprotocols . . . . . . . ... . 54
The decomposition of a point Az with A= {X1,X2, X3} . .. ... ... 60
Undirected circular graph with eightnodes . . . . . . .. ...... ... 96
Execution of the agreement algorithm . . . . . .. ... ... ...... 96
Evolution ofjd(K)lle Withtime . . . . . . . . . . . .. ... . ... ... 97
The distances betwegf(k) andX;(0)fori=1...8 . . . . ... ... .. 98
The evolution ofZ3,(I2l3) . . . . . . . . . ..., 136

Vil



Chapter 1

Introduction
This chapter serves as an introduction to the rest of thasthieg providing the
motivation for the current work. Moreover, it introducee foroblems that are addressed

and our contributions.

1.1 Motivation

In the following chapters we address problems related tdiragent optimization
and filtering. We design and analyze distributed algorithwvhich are based on the con-
sensug@greement asymptotic algorithm for performing localizesl (using only informa-
tion from neighbors) computations. A consensus problensistsof a group of dynamic
agents who seek to agree upon certain quantities of inteyeskchanging information
among them according to a set of rules. This problem can nrmdey phenomena involv-
ing information exchange between agents such as coopecatitrol of vehicles, forma-
tion control, flocking, synchronization, parallel commgfj etc. Distributed computation
over networks has a long history in control theory startinthwhe work of Borkar and
Varaiya [5], Tsitsikils, Bertsekas and Athans [51, 52] ogrechronous agreement prob-
lems and parallel computing. A theoretical framework folvsw consensus problems
was introduced by Olfati-Saber and Murray in [42, 43], whikdbabaie et al. studied

alignment problems [18] for reaching an agreement. Retexgiensions of the consen-



sus problem were done by Ren and Beard [39], by Moreau in [E3hore recently, by
Nedic and Ozdaglar in [32, 33] or by Olshevsky and Tsitsiklif36].

Typically agents are connected via a network that changistiwie due to link fail-
ures, packet drops, node failure, etc. Such variationspolémy can happen randomly
which motivates the investigation of consensus problensieua stochastic framework.
Hatano and Mesbahi consider in [17] an agreement problemramglom information
networks, where the existence of an information channebden a pair of elements at
each time instance is probabilistic and independent ofrai@nnels. In [38], Porfiri and
Stilwell provide stificient conditions for reaching consensus almost surely enctise
of a discrete linear system, where the communication flonnergby a directed graph
derived from a random graph process, independent of otineritistances. Under a sim-
ilar model of the communication topology, Tahbaz-Saleld dadbabaie give necessary
and stficient conditions for almost sure convergence to consemgdgl], while in [45],
the authors extend the applicability of their necessarysafittient conditions to strictly
stationary ergodic random graphs.

The consensus algorithm proves to be a useful tool for sglgistributively opti-
mization and estimation problems. Multi-agent distrilolb@timization problems appear
naturally in many distributed processing problems (sucheawork resource allocation,
collaborative control and estimation, etc.), where thenojzation cost is a convex func-
tion which is not necessarily separable. A distributed satignt method for multi-agent
optimization of a sum of convex functions was proposed if,[8Bere each agent has
only local knowledge of the optimization cost, i.e. knowdyoane term of the sum.
The agents exchange information according to a commuaitétpology, modeled as an

2



undirected, time varying graph, which defines the commuimicaneighborhoods of the
agents. The agents maintastimate®of the optimal decision vector, which are updated
in two stages. The first stage consists of a consensus stepgatie estimates of an
agent and its neighbors. In the second stage, the resuleafaisensus step is updated
in the direction of a subgradient of the local knowledge ef dtptimization cost. Another
multi-agent subgradient method was proposed in [20], wheFecommunication topol-
ogy is assumed time invariant and where the order of the tagestmentioned above is
inverted.

A fundamental problem in sensor networks is developingifisted algorithms for
the state estimation of a process of interest. Generi@aflypcess is observed by a group
of (mobile) sensors organized in a network. The goal of eads® is to compute accu-
rate state estimates. The distributed filtering (estinmtpyroblem has received a lot of
attention during the past thirty years. An important cdnttion was made by Borkar and
Varaiya [5], who addressed the distributed estimation lgralof a random variable by a
group of sensors. The particularity of their formulatiorthat both estimates and mea-
surements are shared among neighboring sensors. The agtiaw that if the sensors
form a communication ring, through which information is banged infinitely often, then
the estimates converge asymptotically to the same vakiethiey asymptotically agree.
An extension of the results in reference [5] is given in [5De recent technological ad-
vances in mobile sensor networks have re-ignited the istt@rehe distributed estimation
problem. Most papers focusing on distributed estimatimppse diferent mechanisms
for combining the Kalman filter with a consensus filter in artte ensure that the es-

timates asymptotically converge to the same value, schevheh will be henceforth
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called consensus based distributed filtering (estimatitggrithms. In [41] and [40], sev-
eral algorithms based on the idea mentioned above are utdead In [8], the authors
study the interaction between the consensus matrix, théauof messages exchanged
per sampling time, and the Kalman gain for scalar systems. shown that optimizing
the consensus matrix for fastest convergence and usingetiteatized optimal gain is
not necessarily the optimal strategy if the number of exgedmmessages per sampling
time is small. In [48], the weights are adaptively updatethinimize the variance of the
estimation error. Both the estimation and the parametemag#tion are performed in a
distributed manner. The authors derive an upper bound oertbevariance at each node

which decreases with the number of neighboring nodes.

1.2 Contributions of the thesis

Our contributions are as follows. In Chapter 2 we study thdopmance met-
rics (rate of convergence and guaranteed region of corveej®f the consensus-based,
multi-agent subgradient method proposed in [33], for theeaaf a constant stepsize. The
communication among agents is modeled by a random grapépémdient of other time
instances, and the performance metrics are viewed in thecegon sense. Random
graphs are suitable models for networks that change with diue to link failures, packet
drops, node failure, etc. Our focus is on providing uppernasuon the performance
metrics, which explicitly depend on the probability dibtriion of the random graph. The
explicit dependence on the probability distribution alkous to determine the optimal

probability distributions in the sense that they would easthe best guaranteed upper



bounds on the performance metric. As an example of possiplécations of our results,
we address a scenario where the goal is to tune the commionigaibtocol parameters
of a wireless network so that the performance of the mukirhgubgradient method is
improved, in the context of a distributed parametric sysentification application.

In Chapter 2 we emphasize thgezt and importance of the agreement step in solv-
ing an optimization problem distributively. It is often tlvase that we need to solve
optimization problems that go beyond tR& setup. In [47], the authors formulate opti-
mization problems for theusted routing problemouting under a semiring framework. In
[28, 27], the populaparticle swarm optimization algorithims extended to combinatorial
spaces, such as Euclidean, Manhattan, and Hamming spaekdedto the distributed
optimization algorithm introduced in Chapter 2, a first sieextend the applicability of
the algorithm is to formulate and analyze the agreementi@noin more general spaces.
Consequently, in Chapter 3 we generalize the asymptotisasmus problem to the more
general case of convex metric spaces and emphasize thenfenti role of the gener-
alized notion of convexity and in particular of the genearadi convex hull of a finite set
of points. Tsitsiklis showed in [51] that, under some minlim@nnectivity assumptions
on the communication network, if an agent updates its vajuehmosing a point from
the (interior) of the convex hull of its current value and therent values of its neigh-
bors, then asymptotic convergence to consensus is achié&ewill show that this idea
extends naturally to the case of convex metric spaces. Agplication we present a
probabilistic consensus of opinion algorithm and show tthf#ts our general framework
for a particular convex metric space.

In Chapter 2 we assume that the communication topology, wdiictates how the

5



consensus step is performed, is modeled by a random graggpendent of other time
instances. In Chapter 4, we generalize the communicatictheireind study the linear
consensus problem where the communication flow betweensaigamodeled by a (pos-
sibly directed) switching random graph. The switching iseed@ined by a homogeneous,
finite-state Markov chain, each communication patternesponding to a state of the
Markov process. We address both the continuous and didoreteases and, under cer-
tain assumptions on the matrices involved in the linear meheve give necessary and
suficient conditions such that average consensus is achievind imean square sense
and in the almost sure sense. The Markovian switching mooe$ dgpeyond the com-
mon i.i.d. assumption on the random communication topokrgy appears in the cases
where Rayleigh fading channels are considered. Our aim shoov how mathemati-
cal techniques used in the stability analysis of Markovianp linear systems, together
with results inspired by matrix and graph theory, can be usquove (intuitively clear)
convergence results for the (linear) stochastic consgmsimem.

In Chapter 5 we address the consensus-based distribuead hitering problem.
We assume that each agent updates its (local) estimate istegs. In the first step, an
update is produced using a Luenberger observer type of fittidhe second step, called
theconsensus stepvery sensor computes a convex combination between @kupdate
and the updates received from the neighboring sensors.ifar gonsensus weights, we
will first give suficient conditions for the existence of filter gains such thatdynamics
of the estimation errors (without noise) are asymptotycathble. Next, we present a
distributed, sub-optimal filtering algorithm, valid fomie varying topologies as well,
resulting from minimizing an upper bound on a quadratic exgtressed in terms of the

6



covariances matrices of the estimation errors. We will plgsent a connection between
the consensus-based linear filter and the linear filterirrgdérkovian jump linear system
appropriately defined, a connection which was inspired hyposavious work on state

estimation for switching systems (see for instance [24])[2



Chapter 2
Distributed Optimization under Random Communication Topes

2.1 Introduction

We investigate the collaborative optimization problem muti-agent setting, when
the agents make decisions in a distributed manner using ilofmamation, while the
communication topology used to exchange messages andniation is modeled by a
graph-valued random process, assumed independent arcadlgrdistributed (i.i.d.).
Specifically, we study the performance of the consensusebauulti-agent distributed
subgradient method proposed in [33], for the case of a cohstapsize.

Random graphs are suitable models for networks that chartgeime due to link
failures, packet drops, node failures, etc. An analysishef multi-agent subgradient
method under random communication topologies is addrassg@®]. The authors as-
sume that the consensus weights are lower bounded by sonteegsalar and give
upper bounds on the performance metrics as functions o$thisr and other parameters
of the problem. More precisely, the authors give upper bewnrdthe distance between
the cost function and the optimal solution (in expectatiavere the cost is evaluated
at the (weighted) time average of the optimal decision vécastimate.Our main goal
is to provide upper bounds on the performance metrics, waxgilicitly depend on the
probability distribution of the random graphWe first derive an upper bound on the

difference between the cost function, evaluated at the estimatethe optimal value.



Next, for a particular class of convex functions, we focustloa distance between the
estimate of the optimal decision and the minimizer. The ufoeind we provide has a
constant component and a time varying component. For thkerlate provide the rate
of convergence to zero. The performance metrics are eesluaa their expected val-
ues. The explicit dependence on the graph’s probabilitiridigion may be useful to
design probability distributions that would ensure thetlgegranteed upper bounds on
the performance metrics. This idea has relevance espeaiathe wireless networks,
where the communication topology has a random nature wittobability distribution
(partially) determined by the communication protocol paeters (the reader can consult
[21, 35], where the authors introduce probabilistic mof®lsuccessful transmissions as
functions of the transmission powers). As an example ofiptesapplication, we show
how the distributed optimization algorithm can be used tdgoen collaborative system
identification and we present numerical experiments resmitler the randomized [7] and
broadcast [1] gossip protocols. Similar performance rogtais our are studied in [2],
where the authors generalizes the randomized incremerigiadient method and where
the stochastic component in the algorithm is described byaek® chain, which can be
constructed in a distributed fashion using local informatnly. Newer results on the dis-
tributed optimization problem can be found in [13], where &uthors analyze distributed
algorithms based on dual averaging of subgradients, anddereharp bounds on their
convergence rates as a function of the network size anddgpol

Notations: Let X be a subset oR" and lety be a point inR". By slight abuse
of notation, let]ly — X|| denote the distance from the pointo the setX, i.e. |ly— X|| =
Minyex |ly— X||, where]| - || is the standard Euclidean norm. For a twicgetentiable func-

9



tion f(x), we denote by f (x) andV2f(x) the gradient and Hessian bfat x, respectively.
Given a symmetric matriA, by (A > 0) A > 0 we understand is positive (semi) definite.
The symbol® represents the Kronecker product.

Let f : R" — R be a convex function. We denote By (x) the subdiferential of f

atx, i.e. the set of all subgradients dfat x:
of(X) ={deR"f(y) > f(X)+d'(y-X), Vye R"}. (2.1)

Let e > 0 be a nonnegative real number. We denotétfy(x) the e-subdiferential off at

X, i.e. the set of alé-subgradients of atx:
0 F(X) ={deR"f(y) > f(X)+d'(y-X) —¢, YyeR"). (2.2)

The gradient of the dierentiable functiorf (x) on R" satisfies d.ipschitz condition with
constant Lif

IVF(X) = V)l <LIx=Vll, YxyeR".

The diterentiable, convex functiof(x) on R" is strongly convex with constanifl
I
f0) = F0)+ VI (=) + 5lly— X%, ¥xyeR".

We will denote by LEM and SLEM the largest and second largiggiralue in modulus
of a matrix, respectively. We willuse CBMASM as the abbréwiafor Consensu®ased
M ulti-AgentSubgradient ethod and pmf for probability mass function.

Chapter structureSection 2.2 contains the problem formulation. In Secti@wze
introduce a set of preliminary results, which mainly constgroviding upper bounds for

a number a quantities of interest. Using these preliminesylts, in Section 2.4 we give
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upper bounds for the expected value of two performance osetthe distance between
the cost function evaluated at the estimate and the optiolatisn and the (squared)
distance between the estimate and the minimizer. Sect®oaaws how the distributed

optimization algorithm can be used for collaborative systéentification.

2.2 Problem formulation

2.2.1 Communication model

Consider a network dfl agents, indexed hbiy=1,...,N. The communication topol-
ogy is time varying and is modeled by a random gr&gk) = (V,&(K)), whereV is the
set ofN vertices (nodes) anél(k) = (gj(K)) is the set of edges, and where we uked
denote the time index. The edges in the&@) correspond to the communication links
among agents. Given a positive inteddr the graphG(k) takes values in a finite set
G =1{G1,Gy,...,G\} at eaclk, where the graphG; = (V,&;) are assumedndirectedand
without self loops In other words, we will consider only bidirectional comnication
topologies. The underlying random process3gk) is assumed i.i.d. with probability

distributionPr(G(k) = Gj) = p;, Yk > 0, Wherezi'\ﬂl pi = 1 andp; > 0.

Assumption 2.2.1.(Connectivity assumption) The gragh= (V,E) resulting from the

union of all graphs in th¢ is connectedwhere

M M
G= UGi = [V,U&].
Let G be an undirected graph witi nodes and no self loops and late RN<N

be a row stochastic matrix, with positive diagonal entrié§e say that the matrid

11



correspondgo the graphG or the graphs is inducedby A if any non-zero entryifj) of

A, withi # j implies a link fromj toi in G and vice-versa.

2.2.2 Optimization model

The task of théN agents consists of minimizing a convex functibnR" — R. The

function f is expressed as a sumMffunctions, i.e.

N
f09 =) i, (23)
i=1

wherefi : R" — R are convex. Formally expressed, the agents want to codgsyatolve

the following optimization problem

N
Qﬂig; fi(). (2.4)
The fundamental assumption is that each agdrds access only to the functidn

Let f* denote the optimal value df and letX* denote the set of optimizers &f
i.e. X* ={xe R"f(x) = f*}. Letxi(k) € R" designate thestimate of the optimal decision
vectorof (2.4), maintained by agemtat timek. The agents exchange estimates among
themselves subject to the communication topology desthiyehe random grapG(k).

As proposed in [33], the agents update their estimates asmngdified incremental
subgradient method. Compared to the standard subgradethbd) the local estimate
xi(K) is replaced by a convex combination xtk) with the estimates received from the
neighbors:

N
xi(k+1)= Z aij (K)xj (K) — a(K)di (K), (2.5)
=1
wherea;j(K) is the {, )" entry of a stochastic random mat(k) which corresponds

to the communication grap&(k). The matricesA(k) form an i.i.d. random process
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taking values in a finite set gfymmetricstochastic matrices withositive diagonal entries
A= {A;}i'\ﬁl, whereA; is a stochastic matrix corresponding to the gré&ple G, for i =
1,...,M. The probability distribution oA(K) is inherited fromG(k), i.e. Pr(A(k) = Aj) =
Pr(G(k) = Gj) = pi. The real valued scalar(k) is the stepsize, while the vectd(k) € R"
is a subgradient of; at x;(k), i.e. di(k) € dfi(xi(k)). Obviously, whenf;j(x) are assumed
differentiabled; (k) becomes the gradient dfat x;(k), i.e. d(kK) = V fi(x(k)).

Note that the first part of equation (2.5) is a consensus stgppblem that has
received a lot of attention in recent years, both in a detastic ([6, 14, 18, 29, 39, 51,
52]) and a stochastic ([17, 23, 44, 45]) framework.

The consensus problem undeffdient gossip algorithms was studied in [1, 7, 12].
We note that there is direct connection between our commatinit model and the com-
munication models used in thandomized gossip protocpl] and broadcast communi-
cation protocol[1]. Indeed, in the case of the randomized communicatiotogad, the
setG is formed by the graphG;j with only one link {, j), wherePr(G(k) = Gjj) = %Pij
for someP;j > 0 with 2V, Pjj = 1, while the setA is formed by stochastic matricég of
the formA;; =1 - %(a —ej)(a —ej)’, where vectors the represent the standard basis. In
the case of the broadcast communication protocol, thg seformed by the graphS;,
whereG; contains links between the nodand the nodes in its neighborhood, denoted
by Ni. The probability distribution o6(k) is given byPr(G(k) = G;) = % and the setA
is formed by matrices of the fordy = | - 6; 3’ jen, (6 —€j)(e —e])’, for some O< §; < Wl.|

The following assumptions, which will not necessarily bedisimultaneously, in-

troduce properties of the functidr(x).
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Assumption 2.2.2.(Non-differentiable functions

(a) The subgradients of the functiongxj are uniformly bounded, i.e. there exists a

positive scalakp such that

dl| < o,Vd € 8fi(X), YxeR", i=1,...,N,

(b) The stepsize is constant, i.e.

a(k) = a, Yk> 0,
(c) The optimal solution set*™s nonempty.
Assumption 2.2.3.(Differentiable functions
(a) The functions;fx) are twice djferentiable orR",
(b) There exists positive scalafsl; such that

lil < V2fi(x) < Lil, Yxe R" andVi,

(c) The stepsize is constant, icgk) = « for all k and satisfies the inequality

o (A+1 1
O<a<min _T’T ,

where A is the smallest among all eigenvalues of matrices|A min;l; and L=

max L.

Assumption 2.2.3 -(b) is satisfied if the gradientfk) satisfies a Lipschitz condi-
tion with constant; and if f;(x) is strongly convex with constaht Also, under Assump-
tions 2.2.3X* has one element which is the unique minimizer ¢f), denote henceforth
by x*.
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2.3 Preliminary Results

In this section we lay the foundation for our main results étt®n 2.4. The pre-
liminary results introduced here revolve around the ide@ro¥iding upper-bounds on
a number of quantities of interest. The first quantity is espnted by the distance be-
tween the estimate of the optimal decision vector and theageeof all estimates. The
second quantity is described by the distance between thagesef all estimates and the
minimizer.

We introduce theaveragevector of estimates of the optimal decision vector, de-

noted byx(k) and defined by

N
| _
X(K) 2 N;mk). (2.6)
The dynamic equation for the average vector can be deriead {2.5) and takes the form
(k1) = 50K~ V(K. @

whereh(k) = Zi’i 1di(K).
We introduce also thdeviationof the local estimates;(k) from the average esti-
matex(k), which is denoted by; (k) and defined by
Z(K) = x(K)—x(k), i=1...N. (2.8)

and letB be a positive scalar such that

Iz(0)| <B, i=1...N.

Let us define thaggregaterectors of estimates, average estimates, deviations abjjfadients,
respectively:
X(K) = [x1(K), %2(K)', ..., xn(K)'] € RN™,
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X(K)' £ [X(K)', X(K)",..... x(k)] € RN™,
(k) = [z1(K), Z2(K) ,....zn(K)'] € RN"

and

d(k)’ £ [d1(K)",da(K)', ..., dn(K)'] € RN

From (2.6) we note that the aggregate vector of average &stincan be expressed as
X(K) = Ix(K),

whereJ = %]1]1’@ |, with | the identity matrix inR™" and1 the vector of all ones iR N.

Consequently, the aggregate vector of deviations can liewias
z(K) = (I = J)x(K), (2.9)

wherel is the identity matrix ifR"™<"N_ The next Proposition characterizes the dynamics

of the vectorz(k).

Proposition 2.3.1. The dynamic evolution of the aggregate vector of deviatisggven

by
z(k+ 1) = W(K)z(K) — a(K) (I - J)d(K), (0) = zo, (2.10)

whereW(k) = A(k) —J andA(k) = A(K) ® |, with solution
k-1
z(k) = @(k,0)z(0)— Z a(9)0(k, s+ 1)d(s), (2.11)
s=0

whered(k, s) is the transition matrix of (2.10) defined ik, s) = W(k— 1)W(k—-2)- - - W(S),

with Ok, k) = 1.
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Proof. From (2.5) the dynamics of the aggregate vector of estimsigisen by

x(k+ 1) = AK)X(K) — a(K)d(K). (2.12)

From (2.9) together with (2.12), we can further write

2(k+1) = (I = I)x(k+ 1) = (A(K) — I)x(K) — (k)| = I)d(K).

By noting that

(A(K) = 9)z(K) = (A(K) = I)(I = )x(K) = (A(K) = I)x(K),

we obtain (2.10). The solution (2.11) follows from (2.10y&bher with the observation

thatd(k, )(1 — J) = d(k, 3). O

Remark 2.3.1. The transition matrixd(k, s) of the stochastic linear equation (2.10) can
also be represented as

D(k, S) = -3, (2.13)

ﬁA(k—i)
i=1

whered = (%]l]l’)@ I. This follows from the fact that for anyi{1,2,...,s— 1} we have

(A=) = )(AK=i—1)=J) = A(—i)A(K—i—1)—J.

Remark 2.3.2 (On the first and second moments of the
transition matrix®(k, s)). Let m be a positive integer and consider the transition rxatri
®d(k+m,k) = W(k+m-1)...W(K), generated by a sequence of length m of random graphs,
i.e. §K)...G(k+m-1), for some k= 0. The random matrix>(k + m, k) takes values of
the form W W, ---Wi_,, with ij € {1,2,...,M} and j=1,...,m. The norm of a particular

realization of®(k+m,K) is given by the LEM of the matrix product W, - -- Wi, or the
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SLEM of A A, --- A, denoted henceforth by, .. Letq, i, = 1‘[’]-“:l Pi; be the proba-
bility of the sequence of graphs,G..G;,, that appear during the time intervgk, k+ m).
Let I, be the set of sequences of indices of length m for which tloawhgraphs with the
respective indices produces a connected graph,he. {i1iz2...im| U?llGi,- = connected
Using the previous notations, the first and second momeiit®aform ofd(k+ m, k) can
be expressed as

E[llo(k+mK)lI] = 7m, (2.14)
Elll®k+m K] = om, (2.15)

wherenm = ¥ el djdj + 1= Xjel,,dj @and pm = Zj€|mqj/1j2 +1-3je,0j- The integer j
was used as an index for the elements of get &. for an element of the form.i..inm.

The above formulas follow from results introduced in [18¢nhma 1, or in [39],
Lemma 3.9, which state that for any sequence of indicesi, € I, the matrix product
A, ---Ai, is ergodic, and thereforgj < 1, for any je Im. Conversely, if g I, thena; = 1.

We also note tha}j, q; is the probability of having a connected graph over a time
interval of length m. Due to Assumption 2.2.1, fofisiently large values of m, the set |

is nonempty. In fact for m M, |, is always non-emptylherefore, for anyn such that

Im is not empty, we have thatOpmn < nm < 1. In general for large values of m, it may be
difficult to compute all eigenvaluey, j € I. We can omit the necessity of computing the
eigenvalueslj, and this way decrease the computational burden, by usiadaifowing

upper bounds ofy, andpm

m < AmPm+ 1— P, (2.16)

pm < AP+ 1= P (2.17)
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wherelm = maX, 4j and py, = ¥ je,,d;j is the probability to have a connected graph
over a time interval of length m. For notational simplicily,what follows we will omit

the index m when referring to the scalagig andpm.

Throughout this chapter we will use the symboisy andp in the sense defined
within the Remark 2.3.2. Moreover, the valuerofis chosen such tha, is nonempty.
The existence of such a value is guaranteed by Assumptioh 2.2

The next proposition gives upper bounds on the expecteesaltithe norm and

the squared norm of the transition matdiXk, s).

Proposition 2.3.2. Let Assumption 2.2.1 hold, and letrs < k be three nonnegative
integer values and m a positive integer, such that the gas Inon-empty. Then, the

following inequalities involving the transition matrix(k, s) of (2.10), hold

Elllotk, 9l <7, (2.18)
Efllok, 9117 < L7, (2.19)
EfI(k. 1)@k, 9)|]] < pl'mlnl 5, (2.20)

wheren andp are defined in Remark 2.3.2.

Proof. We fix anm such that the probability of having a connected graph ovéma t
interval of lengthm is positive, i.e. I, is non-empty. Note that, by Assumption 2.2.1,
such a value always exists (pick> M). Lett be the number of intervals of length

betweensandk, i.e.



and letsp, s1,..., S be a sequence of nonnegative integers suctsthag < s1 <... < 5 <K
wheres;1—s =mandi =0,...,m-1. By the semigroup property of transition matrices,
it follows that

Dk, s) = DK, ) (st &-1) - (81, 9),
or

1D(K, Il < ID(st, St—2)I - - 1D(S1, S,
where we use the fact thi®(k, )|l < 1. Using the i.i.d. assumption on the random

processA(k), we can further write

E[llok, 9l < E[lId(st, se-2)Il] - - - E[IIP(s2, 9]

which together with (2.14) leads to inequality (2.18).
Similarly, inequality (2.19) follows from (2.15) and frorhé i.i.d. assumption on
the random graph process.

We now turn to inequality (2.20). By the semigroup property get
E[llo(k. 1)@ (K, )'|l] < E[llok, 9)2I0(s. NI < E[IDK, S)IPTE[lID(s, NI,

where the second inequality followed by the independenca(kf. Inequality (2.20)

follows from (2.18) and (2.19). |

In the next lemma we show that, under Assumption 2.2.3, fallsemougha the

gradientsV f;(x;(k)) remain bounded with probability one for il

Lemma 2.3.1. Let Assumption 2.2.3 hold and I&t: RN" — R be a function given by
F(x) = Zi’il fi(x) wherex’ = (x3,..., X ). There exists a positive scalarsuch that
IV (DI < ¢,V i, kw.p. 1
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IVEUDN < ¢, ¥ i,k w.p. 1

wherep = L||x(0)-X||+ L(l%q + 1) IXIl, g= max|1—all,|1-al]}, X is the unique minimizer

of F(x), and x(k) and x(k) satisfy (2.5) and (2.7), respectively.

Proof. We first note that since the matricés have positive diagonal entries, they are
aperiodic and thereforg € (-1 1]. From Assumption 2.2.3 it follows immediately that

¥ (x) is a convex, twice dierentiable function satisfying
Il < V2F(x) < LI, (2.21)

wherel = minjlj, L = maxL; andl is the identity matrix inR""N. In addition,  (x)
has a unique minimizer denoted By The dynamics described by (2.5) can be compactly
written as

x(k+ 1) = A(RX(K) — 2VF (x(K)), X(0) = Xo, (2.22)

with x(k)’ = (x1(K)’, ..., xn(K)').

We observe that equation (2.22) is a modified version of tadignt method with
constant step, where instead of the identity matrix, we hiaabA (k) multipliesx(k). In
what follows we show that the stochastic dynamics (2.22fable with probability one.

Using a similar idea as in Theorem 3, page 25 of [37], we haat th
1
VF (x(K) = VF (X) + f V2F (% + 7(x(K) — %)) (X(K) = X)dr = H(K)(x(K) — %),
0
wherell < H(K) < LI by virtue of (2.21). Hence, with probability one
IIX(k+ 1) —X|| = [JAK)X(K) — X — aVF (X(K)) + A(K)X — A(K)X|| <

< NAK) — aH W Ix(K) = XI + 1A K) = T
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But since

(A—abl)l <AK) - H(K) < (1-al)l,

it follows that
[IX(K+ 1) =X < qlIx(K) = X|| + |4 — L[[IXIl,

whereq = max|1 - al|,|1-«all}. Since by Assumption 2.2.3-(e)< min{ill_l,ll} we get

thatq < 1 and therefore the dynamics (2.22) is stable with prolgtwihe and
(9~ 1 < cHIX(©) =Kl + Il < [X(0) = + =[5 Vk
1-q 1-q
From Assumption 2.2.3 we have that
IV £ (6 (RIF < IVF (XKD < LIIx(K) = XII < LIIx(0) - XIl + 12—_Lq||>~<||. (2.23)
We also have that
[IX(K) = X1l = II%(K) = IK + IX = K| < [Ix(K) = XI| +IKII,

from where it follows that

IV < 197 GRI9N < LIS -3 < Lix(Q) -+ L (2o s 1) 1. 2.24)

Taking the maximum among the right hand side terms of theualties (2.23) and

(2.24), the result follows. O

Remark 2.3.3. If the stochastic matricesfare generated using a Laplacian based
scheme, e.g.

A =1 -¢eLl,Vi,
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where/; is the Laplacian of the graphi@nde < ﬁ then it turns out thal > 0. Hence,

the inequality in Assumption 2.2.3-(c) is satisfied if

1
O<C¥<E,

which is a sificient condition for the stability of (2.5). In the case of taedomized and

broadcast gossip protocols it can be checked thatO.

Remark 2.3.4. Throughout the rest of the chaptershould be interpreted in the context
of the assumptions used, i.e. under Assumption 2¢i2,the uniform bound on the
subgradients of jfx), while under Assumption 2.2.3, is the bound on the gradients

Vfi(x(K)) andV f;(x(k)) given by Lemma 2.3.1.

The following lemma gives upper bounds on the first and thers&éenoments of

the distance between the estimatgx) and the average of the estimate&).

Lemma 2.3.2.Under Assumptions 2.2.1 and 2.2.2 or 2.2.1 and 2.2.3, fos#ggiences
{(xi(K}ks0, 1 = 1,...,N generated by (2.5) with a constant stepsizehe following in-
equalities hold
B m
E[l1x (K) = X(K)I] < 8 VNylm) + o ‘/Nrn (2.25)

|_k;mlJ+l_ [k;mlJ+1
_m +2Na,8(,0mp il ,
1-p p—n

E[lI% (K) = X(K)I2] < NB2plm] + Na2e? (1 + Zlen)

(2.26)

wheren, p and m are defined in Remark 2.3.2.

Proof. Note that the norm of the deviatiaqn(k) = X;(k) — x(k) is upper bounded by the

norm of the aggregate vector of deviatial) (with probability one), i.e||z(K)|| < ||z(K)]|.
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Hence, by Proposition 2.3.1, we have

k-1
1 (R < 11z(K) = (K, 0)2(0) —a > @(k, 5+ 1)d(IIl
s=0

or

k-1
Ella (K] <8 VNE[ID(K, O)l] +ap VN > E[llo(k, s+ ],
s=0

where we used the fact thii (0)|| < 8 and||di(K)|| < ¢, Yk > 0.

By inequality (2.18) of Proposition 2.3.2, we get

k-1
k k—s-
Ez (K] < VNitw! + ap VN Y gt 5,
s=0

Noting that the sunx*-37 L5+ can be upper bounded by

LG NI

Zntkslj<mzn = — gmlin,

inequality (2.25) follows.

We now turn to obtaining an upper bound on the second momejaflof.

Let Z(k) e RN™N" pe the symmetric, semi-positive definite matrix defined by
Z(K) = z(k)z(k)'.

Using Proposition 2.3.1, it follows th&t(k) satisfies the following dynamic equa-
tion

Z(k+1)=W(K)ZKW(K) +F(K), (2.27)
whereF(K) is given by
F(K) = ?(1 = 3)d(K)d(K)' (I = J) = aW (K)z(K)d(K)' (I =J)" —a(l —I)d(K)z(K)' W (K)'.

(2.28)
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The solution of (2.27) is given by

k-1
Z(K) = d(k,0)Z(0)®(k, 0y + Z d(k, s+ 1)F(s)D(k, s+ 1) (2.29)
s=0

For simplicity, in what follows, we will omit the matrik—J from F(Kk) since it disappears

by multiplication with the transition matrix (see Propasit2.3.1). We can further write

k=1
IZ()I < (K O)IAIZ(O)I+ ) lld(k, S+ LF(S)D(k, S+ 1Y,
s=0
and by noting thaltZ (k)|| = |1z(K)||?, we obtain
k-1
ELIz(9I7] < Efllo(k, 0)IP1IZO)I7 + > ElID(k, s+ DF(9D(k s+ 1Y1l.  (2.30)
s=0
From (2.19) of Proposition 2.3.2 we obtain
Kk
E[lo(k,0)7] < pl.
We now focus on the terms of the sum in the right hand-side 802 We have

D(k, s+ L)F(D(K, S+ 1) = 20k, s+ 1)d(9)d(s) D(k, S+ 1)

—a®(k, s+ DW(9)Z(9)d(8) Dk, S+ 1) — ad(k, s+ 1)d(8)2(s) W () D(k, S+ 1 .

Using the solution of(k) given in (2.11), we get

d(k, s+ 1)W(9)z(s)d(s)' d(k,s+1) =

s-1
= ®(k, s+ 1)W ()| O(s,0)z(0) - « Z @(s,r+1)d(r) |d(s) D(k, s+ 1)
r=0
s-1
= ®(k,0)z(0)d(s) D(k, s+ 1) — az @(k,r +1)d(r)d(s)’ ®(k,s+1). (2.31)
r=0

Similarly,
O(k, s+ 1)d(9)z(s)’ W(9)'D(k, s+ 1) =
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s-1
®(k, s+ 1)d(9)z(0) D(k, 0 — aZ Dk, s+ 1)d(9)d(r) DK, r + 1)’ (2.32)
r=0

We now give a more explicit formula fab(k, s+ 1)F(S)D(k, s+ 1)':
O(k, s+ 1)F(S)O(k, s+ 1) = (K, s+ 1)d(s)d(s) D(k, S+ 1) —

s-1
—a®(K,0)(0)d(s) D(K, S+ 1) + @ Z (K, 1+ 1)d(r)d(s) DK, s+ 1) —
r=0

s-1
—a®(K, s+ 1)d(9)z(0Y d(k, 0) + a? Z Dk, s+ 1)d(9)d(r) DK, r + 1)’
r=0

By applying the norm operator, we get

1D(K, s+ LDF(S)D(K, s+ 1Y|| < Na?p?|D(k, s+ 1)||°+

s-1 s-1
+NaZp? 3" 0,1 + 1)(K, 5+ 1) |+ Nae? > I1d(k s+ 1)d(k,r + 1Y ||+
r=0 r=0

+NapByl|®(k, s+ 1)O(K,0Y || + NaBepl|D(k,0)D(k, s+ 1)'],

or

1Dk, s+ LF(S)D(K, s+ 1Y|| < Na?p?| O (K, s+ 1)]|°+

s-1
+2Na?p? Z IOk, + 1)D(K, 5+ 1Y|| + 2NaBe|| @ (K, s+ 1)D(K, 0Y . (2.33)
r=0

Next we derive bounds for the expected values of each of thesten (2.33). Based on

the results of Proposition 2.3.2 we can write

k=s-1

E[l®k, s+ 1) gp[T ,

[A—

& S k-s-1 sr k=s-1 L%J
ZE[ncp(k,r+1)q>(k,s+1)’||]sZplTJanJsmol N <
r=0 r=0 r=0
_ —plml+l _
cmpl? )il L
1-n 1-7



and

k=s-1

EfI(k, s+ 1)o(k.0)[] < pl T Il ],

Therefore we obtain

E[IIB(k, s+ L)F(9D(k, s+ 1Y|]] < NaZp? (1 ¥ 127”17) pl'F ]+ 2Nagpl Tl .

We know compute an upper bound fEll;(l) E[l|®(k, s+ 1)F(s)@(k, s+ 1)]|]]. Using the

fact that [k 1J
SN & _ s
Zptk—mljgmzpsgml f Smll
s=0 s=0 —p Y
and
k=l kes-1| | s+l k-1 kes-1 s
s=0 s=0
<mZp|.k;mlJ Snszmp —-n
s=0 Pp—n
we obtain
k-1
END(k s+ (DK, s+ 1Yl < NaZp?(14+ 20 ) Ty
2 Elllo( ¢
s=0 1-n/1-p
eyl
+2Na',8t,0mp i
pP—Nn

Finally we obtain an upper bound for the second momefiz@d|:

k—1J

R
E[llz(K)I2] < NBZolm] + Na2¢2(l+ Z—m) L N | d
1-n)1-p p-n

+ [k;mlJ+1

The following lemma allows us to interprdi(k) as ane-subgradient off; at x(k)

(with € being a random variable).
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Lemma 2.3.3. Let Assumptions 2.2.2 or 2.2.3 hold. Then the vecttk) ds an e(k)-
subdfferential of f at x(k), i.e. d(k) € de fi(x(K)) and hK) = Zi'\lldi(k) is an Ne(k)-

subdjferential of f atx(k), i.e. h(K) € dne) f(X(K)), for any k> 0, where
k-1
e(k) = 2B VN||0(k, )]+ 206 VN ) [[D(k, 5+ 1) (2.34)
s=0

Proof. The proof is somewhat similar to the proof of Lemma 3.4.5 @fj[1 et cf(k) be a

subgradient ofi; at x(k). By the subgradient definition we have that
fiO6(K) = i(X(K)) + i (k) (xi (K) = X(K)) = i (X(K)) = Il ()11 (i (K) = XK1l
or
fi(xi(K) > fi(x(K) — ¢liz (K.

Furthermore, for any € R" we have that
fi(y) > fi(xi(K)) +di(K)' (y—%i(K)) = fi(xi(K)) +di (k)" (y = X(K)) + di (K)" (X(K) — xi (K)) >

> fi(x(K)) +di(K)’ (y = X(K)) = 20|z (K)II > fi(X(K)) + di(K)" (y — X(K)) — 2¢lIz(K)II,
or
fi(y) > fi(x(K)) + di (k)" (y — X(K)) — €(K),
wheree(k) = 2¢l|z(K)]|. Using the definition of the-subgradient, it follows thati(k) €
Beio Ti(X(K)). Summing over all we get that N, di(k) € dnege f(X(K)). Note, thate(K) has

a random characteristic due to the assumptionA (& O

For twice dtferentiable cost functions with lower and upper boundediaessthe
next result gives an upper bound on the second moment of shkende between the aver-
age vecto(k) and the minimizer of .
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Lemma 2.3.4.Let Assumptions 2.2.1 and 2.2.3 hold and{lk)}x-o0 be a sequence of

vectors defined by iteration (2.7). Then, the following uredy holds

QIR - X 7] < IK(0) - x12y% + 22BN Y ”m (4\/——+1) (2.35)
Y1y 1 Y
wherey = 1-al, with | = min;jl; andn is defined in Remark 2.3.2.

Proof. Under Assumption 2.2.3f(x) is a strongly convex function with constait,

wherel = min;l; and therefore it follows that
NI
f(x)—f*> ?Hx—x*llz. (2.36)

We use the same idea as in the proof of Proposition 2.4 in {80hulated under a

deterministic setup. By (2.7), where we use a constantigepswe obtain
0K+ 1) = X7 = K = X = (I = 1K) = X117~ 2 h(kY (k) — ) + P
Using the fact that, by Lemma 2.313K) is aNe(k)-subdiferential off at x(k), we have
f(X) > f(x(k)) + h(k)' (X" — x(k)) — Ne(k),
or, from inequality (2.36),
¥evr, NI _ %112
=Nk’ (x(k) = x) < ==[1x(K) = X1 + Ne(k).
Further, we can write
IX(k+ 1) = X|I? < (L—al) [IX(K) — X||? + 20e(K) + a??
or
k=1

ELIXK) - X117] < (1=l IX0) - X7+ ) (1-al)5 (20E[e(9)] + a??).

s=0
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Note that from Assumption 2.2.3-(c),<0a < { and therefore the quantity = (1 - al)X

does not grow unbounded. It follows that

k-1
ELIXK) - X1P] <yMIX0) - X 1P+ > Y H2E[e(s)] +0%P).  (2.37)

s=0

From the expression e{k) in Lemma 2.3.3, we immediately obtain the following

inequality
. 2
E[e(9)] < 208 VNyLal + Za‘iﬂ“. (2.38)
-n
The inequality
k-1 . k-1 77% s yk—nnkw
D yelal < 7"'177'12[—] = ()t —r
=0 so\ 7V y—nm
yields
k-1 k_ & 2
Z')/k_s_lE[E(S)] < 290,3\/N7 771 " 20“;; \/lel ’ (239)
=0 Y y—nm Ty
which combined with (2.37), generates the inequality (.35 O

2.4 Main Results - Error bounds

In the following we provide upper bounds for two performaneetrics of the CB-
MASM. First, we give a bound on thefiierence between the best recorded value of the
cost functionf, evaluated at the estimakgk), and the optimal valué*. Second, we
focus on the second moment of the distance between the ésti{ld and the minimizer
of f*. For a particular class of twice ftierentiable functions, we give an upper bound
on this metric and show how fast the time varying part of tlosirid converge to zero.
The bounds we give in these section emphasize flieeteof the random topology on the

performance metrics.
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The following result shows how close the cost functioavaluated at the estimate
xi(K) gets to the optimal valué*. A similar result for the standard sub-gradient method

can be found in [31], for example.

Corollary 2.4.1. Let Assumptions 2.2.1and 2.2.2 or 2.2.1 and 2.2.3 hold ang; (&)}k-o0
be a sequence generated by the iteration (2.5),i...N. Let fi_beskk) =mingo._k E[f(X(9))]

be the smallest cost value (in average) achieved by agentdration k. Then

2
lim fPeSYk) < f* + 309N mli + NC;” . (2.40)
—00 —77

Proof. Using the subgradient definition dfat x;(k) we have that
fi(x(K) < fi(x(K)) + ¢llz(K)l, foralli=1,...,N.
Summing over all, we get
f(xi(k)) < F(x(K) + Neliz(K)Il,

which holds with probability one. Subtractirfg from both sides of the above inequality,

and applying the expectation operator, we further get
E[f (i ()] - " < E[f(x(K)] - f + NeE[liz(K)I]],

or
fPes(l) - < min {E[f(X(9)] - "+ NeE[liz(s)ll}- (2.41)
Let x* € X* be an optimal point of . By (2.7), where we use a constant stepsize
we obtain
0K+ 1) =X = K = X = (I < 1XTK) = X117 = 25 h(KY (3TK) — ) + aP?
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and since, by Lemma 2.3.8(x(Kk)) is aNe(k)-subdiferential off at x(k), we have
Xk + 1) = X712 < 1X(K) - X - 2W"‘(f(%(k))— )+ 20e(k) + %%,
or
g o1 k-1
T, %112 T #012 1 ® 2 2
50 = X1 < 1K0) = X117 = T2 D () = 1)+ 20 ) e(9) + ka?
s=0 s=0
Sincel|x(k) - x*||2> 0
g 1 k-1
T 2K = ) IO~ X7 +20 ) e(9) +ka’p?
s=0 s=0

or
k-1

ICUCOR ) < 5 IK0) - x| +NZE[e(s)]+kN‘“”

Adding and subtractindNgE[||z(s)||] inside the sum of the left-hand side of the above

inequality and recalling from Lemma 2.3.3 thk) = 2¢||z(K)||, we obtain

k-1

k-1
S ELFRN - 1+ NeELIZS) < 5 IK0) - X P+ 51 3 Ele(9)] +
s=0

s=0

kNag?
>

Using the fact that
k-1
Z(E[f(X(S))] — 7+ NeE[liz(s)I) = k _min_{E[(X(s)] - "+ NeE[lI()Il]},

s 0 5P

we get

_min_ [ETFAS) - 1+ NgE[IZ(9) < 5.~ IK0) - x||2+—ZE[ (90+

Using inequality (2.38) from Lemma 2.3.3 we obtain

k-1
> Ele(9)] < 208 VN + k2ay? VN -
s=0 1-n 1-n
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It follows that

_min_(ELET9)] - 1+ NeElI2(S} < 5 IK0) - X 1P+

.....

3N m m \ Nag?
(208 VN— + k2ap? VN—— : 2.42
+2k( 90,8\/_1_77+ ayp \/_1_77)+ > ( )
Combining inequalities (2.41) and (2.42) and taking thetlime obtain
: Nap?
lim fPeS(k) < f* + 3?N \/N£+ @
k—oo ! 1—77 2
O

In the case of twice dierentiable functions, the next result introduces an error
bound which essentially says that the estimates “converdgee mean square sense to
within some guaranteed distance” from the optimal poindtadice which can be made
arbitrarily small by an appropriate choice of the stepsireaddition, the time varying

component of the error bound converges to zero at leastrhnea

Corollary 2.4.2. Let Assumptions 2.2.1 and 2.2.3 hold. Then, for the seqUef{kBk-0

generated by iteration (2.5) we have

@
lim sup E[|1x (k) — x*||?] < C1+Cp+2+/C1Co, (2.43)
k— o0
where
a2 2
Ci= T@(“T}fﬁﬂ), Co = No¢?(1+ £0) 2. (2.44)
(b)
E[l%(K) - XI7] < w(K)+C, (2.45)
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wherey (k) = c5¥ with ¢ a positive constant depending on the initial condisig’ =

max{y,nn%}, v =1-al, and where C= 4maxCy,C5}.
Proof. By the triangle inequality we have
1% (K) = X112 < 113 (k) = XTI + 2113 () = XCINIXK) = X1+ [1X(K) = X[
or
EflIxi(k) — x“117] < ELlIx (K) = X171 + 2E11 (k) — X{R)IIXTK) = X1 + ELIX(K) -~ x“[1].

By the Cauchy-Schwarz inequality for the expectation cjperave get

ELlIx (k) — x*112] < E[lIxi(K) — XK1 + 2E[II% (k) - XN ZELIIXK) — X“[12]2 + EL[1(K) — x7112].
(2.46)

Inequality (2.35) can be further upper bounded by
E[IIX(K) = XI17] < ya(K) +Ca,

where

w1(k) = [[IX(0)— x"[I2 + &K = 16,

8apB VN 1
My g

C1

with ¢ = max{y,nn%} andC; being given in (2.44). Using the inequalities

e

=7

3=

p[k;mlJ*_l Sp_%pnkw and 77[ n%’
from (2.26), a new bound fdE[||x; (k) — x(K)||?] is given by

EllIx (k) — X(K)I1?] < y2(K) +Ca,
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whereC; is given in (2.44) and

2NafBem
n-p

C2

wa(k) = |NEZo 4 (7% +p-n%)] 5 = c0".

Taking the limit of (2.46) and recalling that under Assurops 2.2.1 and 2.2.3,
v<1 andnr‘ln <1 for anyme I, we obtain (2.43).

Inequality (2.46) can be further upper bounded by
E[lIx (k) - XI°] < 2maxcy, c2}6* + 2(maxcy, Co}6* + max(Cy, Ca} ) = y(k) +C,

wherey/(k) = csK, with ¢ = 4maxcy, ¢} andC = 4maxCy,Cy}. Hence, we obtained that
the time varying component of the error bound convergesaitigdo zero with a factor

1
6 = maxy,nm}.

2.4.1 Discussion of the results

We obtained upper bounds on two performance metrics rei¢évahe CBMASM.
First we studied the dlierence between the cost function evaluated at the estimdte a
the optimal solution (Corollary 2.4.1) - for nonfférentiable and dierentiable functions
with bounded (sub)gradients. Second, for a particularsctdsconvex functions (see
Assumptions 2.2.3), we gave an upper bound for the secondemoaf the distance
between the estimates of the agents and the minimizer. Wieshlmwed that the time
varying component of this upper bound converges lineareto with a factor reflecting
the contribution of the random topology. We introduced Asption 2.2.3 to cover part
of the class of convex functions for which uniform boundneisthe (sub)gradients can
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not be guaranteed.

From our results we can notice that the stepsize has a simflaence as in the
case of the standard subgradient method, i.e. a small vélaenoplies good precision
but slow rate of convergence, while a larger valueraficreases the rate of convergence
but at a cost in accuracy. More importantly, we can emphalsemfluence of the consen-
sus step on the performance of the distributed algorithmeMffossible, by appropriately
designing the probability distribution of the random grdfdgether with an appropriate
choice of the integem) we can improve the guaranteed precision of the algoritim (i
tuitively, this means making the quantitieg(1—r) andm/(1-p) as small as possible).
In addition, the rate of convergence of the time varying congmt of the error bound
(2.45) can be improved by making the quantjt%/ as small as possible. Note however
that there are limits with respect to the positivkeet of the consensus step on the the rate
of convergence af(k), since the latter is determined by the maximum betvmeandnr%.

Indeed, if the stepsize is small enough, i.e.
a< Tl(l—nn%), (2.47)

then the rate of convergence fk) is given byy. This suggests that having a fast con-
sensus step will not necessarily be helpful in the case of @l stepsize, which is in
accordance with the intuition on the role of a small valuerofin the case inequality
(2.47) is not satisfied, the rate of convergence (@ is determined by;nlw. However, this
does not necessarily means that the estimates will not ‘&rgevfaster to within some
distance of the minimizer”, since we are providing only amebound.

Assume that we are using the centralized subgradient médhmchimize the con-
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vex functionf(x) = Zi'\il fi(X) satisfying Assumption 2.2.2 (the subgradientd;(X) are
uniformly bounded by), where the stepsize usedNistimes smaller than the stepsize of

the distributed algorithm, i.e.
a
X(k+ 1) = x(k) - Nd(k)’

whered(k) is a subgradient of at x(k), with ||d(k)|| < N¢. Then, from the optimization

literature we get

Nap?
: besfy « £* ("%
fm o < 11 =5

where fPes{k) = Mins—o, k f(X(s)). From above we note that, compared with the central-
ized subgradient method with a step sitdimes smaller than the agents’ stepsize, the
distributed optimization algorithm introduced an addiabterm in the error bound given
by 3a¢?N \/N% which reflects the influence of the dimension of the netwoik af the
random topology on the guaranteed accuracy of the algorithm

Let us now assume that we are minimizing the functi¢r), satisfying Assump-

tions 2.2.3-(a)(b), using a centralized gradient algamith
x(k+1) = x(k) - %Vf(x(k)),

where we have that is small enough (& a < %) so that the algorithm is stable and there
exit ¢ so thatl|V fi(x(K))|| < ¢c. It follows that we can get the following upper bound on

the distance between the estimate of the optimal decisictovand the minimizer

2
s * ay
[1X(K) = X*||? < |1X(0) - X ||2yE+T°,

with yc. = 1—al. Therefore, we can see that y. which shows that the rates of conver-
gence, at which the time-varying components of the errontdewwonverge to zero in the
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centralized and distributed cases, are the same. Howdeasgunote that we assumed the
stepzise in the centralized case tohb&mes smaller than the stepsize used by the agents.
The error bounds (2.40) and (2.45) are functions of threatifiess induced by the
consensus stepl:%, % andnnlw. These quantities show the dependence of the perfor-
mance metrics on the pmf @&(k) and on the corresponding random matfgk). The
scalars;y andp represent the first and second moments of the SLEM of the ramda-
trix A(k+1)...A(k+ m), corresponding to a random graph formed over a time intefva
lengthm, respectively. We notice from our results that the perforoeeof the CBMASM
is improved by makingl%, rmp andnnlw as small as possible, i.e. by optimizing these
guantities having as decision variablesand the pmf ofG(k). For instance if we are
interested in obtaining a tight bound &ifi|x; (k) — x*||*] and having a fast decrease to zero
of y(k), we can formulate the following multi-criteria optimizan problem:

Minmp (7™, C1+Ca+2+CiCo)

subjectto: m>1,
(2.48)

3l

nm >y,

>Mpi=1, pi>0.

whereC; andC, were defined in (2.44). The second inequality constraintaeaed to
emphasize the fact that makivyé too small is pointless, since that rate of convergence
of y(K) is limited byy. If we are simultaneously interested in tightening the ujjeeinds

of both metrics, we can introduce the quanq@; in the optimization problem sinc«li-_”—,7
and% are not necessarily minimized by the same probability ithstion. The solution

to the above problem is a set of Pareto points, i.e. solutamtg for which improvement

in one objective can only occur with the worsening of at |eas other objective.
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We note that for each fixed value of, the three quantities are minimized if the
scalarsy andp are minimized as functions of the pmf of the random graph. pyrexi-
mate solution of (2.48) can be obtained by focusing only onimizing 1Tmn since both
nn% and% are upper bounded by this quantity. Therefore, an apprdrisaution can
be obtained by minimizing (i.e. computing the optimal pmf) for each valuerof and
then picking the best valuawith the corresponding that minimize%. Depending on
the communication model used, the pmf of the random graplbeaquantity dependent
on a set of parameters of the communication protocol (tresssan power, probability of
collisions, etc) and therefore we can potentially tuneeh@srameters so that the perfor-
mance of the CBMASM is improved.

In what follows we provide a simple example where we show hpthe optimal

probability distribution,%7 andnnlw evolve as functions ah.

Example 2.4.1.Let G(k) be a random graph process taking values in thgsetG1, G,},with
probability p andl- p, respectively. The graphs@nd G are shown in Figure 2.1. Also,
let A(k) be a (stochastic) random matrix , corresponding tk)taking value in the set

A ={Aq, Az}, with

1 1

$1 300 1000

1 1 1

1430 0100
Al_244 Ap=

0%3o0 00324

0001 001 ¢

Figure 2.2(a) shows the optimal probability that minimizeg; for different values
of m. Figure 2.2(b) shows the optimizedcomputed at P as a function of m. Figures
2.2(c) and 2.2(d) show the evolution of the optimif_érgandnn% as functions of m, from
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Figure 2.1: The sample space of the random g@afk)

where we notice that a Pareto solution is obtained fot Band p = 0.582

In order to obtain the solution of problem (2.48), we neediimpute the probability
of all possible sequences of lengtiproduced byG(k), together with the SLEM of their
corresponding stochastic matrices. This task, for largeegaofm and M may prove to
be numerically expensive. We can somewhat simplify the agatpnal burden by using
the bounds o andp introduced in (2.16) and (2.17), respectively. Note thatrgvesult
concerning the performance metrics still holds. In thisecés each value ah, the upper
bound oy is minimized, wherp,,, is maximized, which can be interpreted as having to
choose a pmf that maximizes the probability of connectioftthe union of random graph
obtained over a time interval of length

Even in the case where we use the boundy,agbmay be very dificult to compute
the expression fop,, for large values ofm (the setG may allow for a large number
of possible unions of graphs that produce connected gragtr®)ther way to simplify
our problem even more, is to (intelligently) fix a value forand try to maximizep,,
having as decision variable the pmf. We note timethould be chosen such that, within

a time interval of lengthm, a connected graph can be obtained. Also, a very large value
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Figure 2.2: (a) Optimap as a function oim; (b) Optimizedn as a function oim; (c)

Optimized%7 as a function ofn; (d) Optimizednnlw as a function om.
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for m should be avoided, sincgl‘—77 is lower bounded byn. Although in general the
uniform distribution does not necessarily minimizeit becomes the optimizer under
some particular assumptions, stated in what follows. @&die such that a connected
graph can be obtained only over a time interval of lenthi.e. in order to form a
connected graph, all graphsghmust appear within a sequence of lenjyth ChooseM

as the value fom. It follows thatp,, can be expressed as:

M
Pm=m! 1_[ Pi-
i=1

We can immediately observe that, is maximized for the uniform distribution, i.qy; =
yfori=1,...,M.

1
m

2.5 Application - Distributed System Identification

In this section we show how the distributed optimizatioroaigpm analyzed in the
previous section can be used to perform collaborative syglentification. We assume
the following scenario: a group of sensors track an objectatjing measurements of
its position. These sensors have memory and computati@bdees and are organized
in a communication network modeled by a random graph proGgk}s satisfying the
assumptions introduced in Section Il. The task of the seyegents is to determine a
parametric model of the object’s trajectory. The measurdsmare &ected by noise,
whose @&ect may diter from sensor to sensor (i.e. some sensors take more aecurat
measurements than others). This can happen for instangesshee sensors are closer to
the object than other (allowing a better reading of the pm¥)f or sensors with dierent
precision classes are used. Determining a model for the éwokution of the object’s
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position can be useful in motion prediction when the motignaimics of the object in
unknown to the sensors. The notations used in the followregradependent from the

ones used in the previous sections.

2.5.1 System identification model

Let p(t)” =[x(t),y(t), z(t)] be the position vector of the tracked object. We model the
time evolution of each of the axis of the position vector asretdependent polynomial

of degreen,, i.e.

X(t) = a§+aft+...+ag the,
y(t) = aj+ajt+...+aht", (2.49)
2t) = aj+ajt+...+ap,t".
The measurements of each sensane given by
Xi(t) = X(t) + & (1),
Yi(t) = y(t) + ey (b), (2.50)
z(t) = Z(t) + & (1),
whereg x(t), & y(t) andeg y(t) are assumed white noises of (unknown) variamq%;g afy

and(rizZ respectively. Equivalently, we have

Xi(t) = @(t) Ox + & x(b),
Yi(t) = ¢(t) 6y + &y (b), (2.51)
z(t) = (1) 02+ € 2(t),
wherep(t) =[1.t,...,t"] andfx =[agx,...,an,x]", by = [A0ys - - .. 8n,y]” @NdO, =[a0 7, . .., 8n, 2] -
In the following we focus only on one coordinate of the pasitvector, say(t).

The analysis, however can be mimicked in a similar way foother two coordinates. Let
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T be the total number of measurements taken by the sensorasiier the following

guadratic cost functions
T
Fi(0x) = > (60— (1) 6x)°, Vi.
t=1

Using its own measurements, sensa@an determine a parametric model for the time

evolution of the coordinatg(t) by solving the optimization problem:
nginji(ex). (2.52)

LetX{ =[xi(1)....,%(T)] be the vector of measurements of sensord letd’ = [¢(1),...,¢(T)]
be the matrix formed by the regression vectors. It is welMamehat the optimal solution
of (2.52) is given by

bi x = (O’ 0) L O’'X;. (2.53)

Remark 2.5.1. It can be shown thad’® is invertible for any T, but it becomes ill con-
ditioned for large values of T. That is why, for our numerisahulations, we will in fact

use an orthogonal basis to model the time evolution of thedioates Xt), y(t), and Zt).

Performing a localized system identification does not take account the mea-
surements of the other sensors, which can potentially exehtdye identified model. If all

the measurements are centralized, a model for the timetemolof x(t) can be computed

by solving
minJ (6),
where
N
VCAEDINACHY (2.54)
i=1
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Note that (2.54) fits the framework of the distributed opaation problem formulated in
the previous sections, and therefore can be solved distrdby eliminating the need for

sharing all measurements with all other sensors.

Remark 2.5.2. If each sensor has a priori information about its accuratwert the cost

function (2.54) can be replaced with

N
T =) 61xTi(6), (2.55)
i=1

wheres; x is a positive scalar such that the more accurate sensor hes|drgers; is. The
scalard;j x can be interpreted agustin the measurements taken by sensor i. The sensors

can use local identification to compuig,. For instanceg; x can be chosen a% y = (%2

i,x

whered?, is given by
1 J
~2 ~ 2
Tix=T Z(Xi (1) — (1) 61,5)°,
t=1
whered; 4 is the local estimate of the model for the time evolution(t x

The distributed optimization algorithm (2.5) can be wnittes

N
Oix(k+1) = > aj (K0 x(K) —aVTi(K), (2.56)
j=1

wherev.7; (k) = 20/ (X; — D6; x(K)).

2.5.2 Numerical simulations

In this section we simulate the distributed system ideriifoz algorithm under two
gossip communication protocols: the randomized gossifopob [7] and the broadcast

gossip protocol [1]. We perform the simulations on a circgeaph, where we assume
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that the cardinality of the neighborhoods of the nodes is tWais graph is a particular
example of small world graphs [53] (for an analysis of thessrsus problem under small

world like communication topologies, the reader can carf8lifor example).
/'/ '\\'\
o ./‘

Figure 2.3: Circular graph witN = 8

In the case of the randomized gossip protocol, the set olermus matrices is given

by

A =(AjLi=1.. N jefi-Li+1}},

whereA;j; = | - %(a —€j)(a — &))" and where by convention we assume thatfN then
i+1=1andifi =1theni—1=N. We assume that if nodewakes up, it chooses with
uniform distribution between its two neighbors. Hence tr@bpbility distribution of the

random matrixA(k) is given by
1
Pr(Ak) = Ajj) = N

We note that the minimum value ofsuch thay, < 1 isN—1. Recall thamis the length
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of a time interval such th&tr(Um‘lG(kH))>Oforanyk It turns out that fom=N-1

N-2 1 N-1
lL:JOG(kH) :N!(m)

Interestingly, the matrix products of length— 1 of the form [T Avigis1+ip With ig €

=Pr

{0,...,N— 1}, and the matrix products that may be obtained by the periontabf the
matrices in the aforementioned matrix products, have theesaLEM (where the sum-
mations in the indices are seen as moddjoin fact it is exactly this property that allows

us to give the following explicit expression fgg_1

Mo1 = Ped” +1-pL, (2.57)

whereA" is the SLEM of the matrix produdy 2A23- - AN-1.N-

In the case of the broadcast gossip protocol, thefsistgiven by
A° = (A,i=1...N},

whereA = | - 3[(e -@a1)(@ —€41) + (& —6_1)(@ —&-1)'] andPr(A(K) = A) = §. For
odd values ofN (andN > 3), the minimum value ofn such thaty,, < 1 is given by

m= "L, In addition, we have that
N-1\ (1\'7
= Pr UG(k+I) = N( 5 ) (N) .

Observing a similar phenomenon as in the case of the raneédrgssip protocol, namely
that the matrix product8y.i,Az+i, - - - An-2+i, fOr ip € {0,...N — 1} and their permutations
have the same SLEM (where as before the summations of ingieeseen as moduhd),
we obtain the formula

b b

nt&T = p2AP+1-pf,
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wherea® is the SLEM of the matrix produd;Az--- An-2.

The values formy,_, andnt% computed above, in the case of the two gossip pro-
tocols, do not necessarily provide tight error bounds,esime considered minimal time
interval lengths so thajy, < 1. Even for this relatively simple type of graph, analytical
formulas forny, for large values oM, are more diicult to obtain due to an increase in
combinatorial complexity and becaus&édient matrix products that appear in the expres-
sion ofy do not necessarily have the same SLEM. However, we did campunerical
estimates for dferent values ofm. Figures 4 and 5 show estimates of the three quantities
of interest;,, 1Tmn andnn%, as functions ofn, for N = 11 (the estimates were computed by
taking averages over 2000 realizations and are shown teigeith the 95% confidence
intervals). We can see thri\% is minimized form =~ 55 in the case of the randomized
gossip protocol and fom ~ 30 in the case of the broadcast gossip protocol, while the
best achievablanlw are approximately equal for the two protocols, (i.e985. for the
randomized gossip protocols an®@82 for the broadcast gossip protocols).

Next we present numerical simulations of the distributesteay identification al-
gorithm presented in the previous subsection, under traorarzed and broadcast gossip
protocols. We would like to point out that, in order to maintaumerical stability, in our
numerical simulation we used an orthogonalized versio®,ajiven by® = ®H, where
®’s columns form an orthogonal basis of the rang@pénd the new vector of the param-
eters is giver = HY, whereH is a linear transformation matrix, whose entries depend on

the orthogonalization process used (Gram-Schmidt, Hamldehtransformations, etc.).
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Randomized gossip protocol, N=11
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Broadcast gossip protocol, N=11
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Therefore, the cost function we are minimizing can be reéamits
~ n ~
T = Ti(B)
i=1

whereJi(8y) = ||Xi —&)éx”Z.

It is easy to check that in the case of the two protocdlshe smallest of all eigen-
values of matrices belonging to the s&j is zero. In addition, Assumption 2.2.3-(a)(b)
are satisfied fol; = Lj = 2, and fora < % the distributed optimization algorithm is guar-
anteed to be stable with probability one (recall Lemma 2.3Ftom above we see that
nn% can not attain less thandB for both protocols, for angn. Therefore, although we can
choosex > 0.01 which in turn impliesy < 0.98, our analysis cannot guarantee a rate of
convergence fog(k) smaller than ®8, since the rate of convergence is upper bounded
by the maximum between and nnlw. However, this does not mean that faster rates of
convergence can not be achieved, which in fact is shown imoorerical simulations.

Figures 6 and 7 present numerical simulations of the digkibsystem identifica-
tion algorithm for the two protocols and for a circular grapth N = 11. In our numerical
experiments we considered a numibet 786 of measurements of tixecoordinate of the
trajectory depicted in Figure 2.6. We assumed thatdoteordinate measurements are
affected by white, Gaussian noise with a signal-to-noisemagieen byS NR=5x1dB,
fori=1...11. The time polynomials modeling the trajectory evolutame chosen of
degree ten, i.eny = 10. We plot estimates of two metrics: nnE*lléi,x(k) —5*||] and
max E[f(éi,x(k))] — f* for different values o# (the estimates were computed by taking
averages over 500 realizations). We note that for largeregbfa, under the two proto-

cols, the algorithm has roughly the same rate of convergdntehe broadcast protocol
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Figure 2.6: Trajectory of the object

1s more accurate. This 1s in accordance with our analysis, since as Figures 4 and 5 show,
# < # for any m, quantities which control the guaranteed accuracy. For smaller
values of @, under both protocols the algorithm becomes more accurate and the rate of

convergence decreases since the parameters y becomes larger and therefore dominant.
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Chapter 3
Distributed Asymptotic Agreement Problem on Convex Me8aces

3.1 Introduction

A convex metric space is a metric space endowed with a corimastsre. In this
chapter we generalize the asymptotic consensus probleimetonbre general case of
convex metric spaces and emphasize the fundamental rotneéxity and in particular
of the convex hull of a finite set of points. Tsitsiklis showiad51] that, under some
minimal connectivity assumptions on the communicatiorwoek, if an agent updates
its value by choosing a point (iR") from the (interior) of the convex hull of its current
value and the current values of its neighbors, then asymptohvergence to consensus
is achieved. We will show that this idea extends naturallyh more general case of
convex metric spaces.

Our main contributions are as followirst, after citing relevant results concerning
convex metric spaces, we study the properties of the distbetween two points belong-
ing to two, possibly overlapping convex hulls of two finitéssef points. These properties
will prove to be crucial in proving the convergence of theesgnent algorithmSecond
we provide a dynamic equation for an upper bound of the vexdftdistances between the
current values of the agents. We show that the agents astiogtiforeach agreement,
by showing that this upper bound asymptotically convergemeto. Third, we character-

ize the agreement point(s) compared to the initial valueb®fagents, be giving upper
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bounds on the distance between the agreement point(s) arnitial values in terms of
the distances between the initial values of the agdfutgh, we emphasize the relevance
of our framework, by providing an application under the farfra consensus of opinion
algorithm. For this example we define a particular conveximsepace and we study in
more depth the properties of the convex hull of a finite setouf{s.

The chapter is organized as follows. Section 3.2 introdtivesnain concepts re-
lated to the convex metric spaces and focuses in particaléineconvex hull of a finite
set. Section 3.3 formulates the problem and states our rhaorém. Section 3.4 gives
the proof of our main theorem together with some auxiliagutes. In Section 3.6 we
present an application of our main result by providing aratiee algorithm for reaching
consensus of opinion.

Some basic notationgsivenW € R™" by [W];; we refer to thei( j) element of the
matrix. Theunderlying graptof Wis a graph of orden for which every edge corresponds
to a non-zero, non-diagonal entry\&f. We will denote byl (4 the indicator function of

eventA. Given some spac& we denote byP(X) the set of all subsets df.

3.2 Convex Metric Spaces

The first part of this section deals with a set of definitiond basic results about
convex metric spaces. The second part focuses on the cooll@x & finite set in convex

metric spaces.
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3.2.1 Definitions and Results on Convex Metric Spaces

For more details about the following definitions and resthlesreader is invited to

consult [46],[49].

Definition 3.2.1. Let (X,d) be a metric space. A mapping: X x X x[0,1] — X is said

to be aconvex structuren X if

d(u, w(xy, 1)) < Ad(u,X) + (1 - D)d(u,y), Yx,y,ue X andV¥1 € [0,1]. (3.1)

Definition 3.2.2. The metric spacéX, d) together with the convex structweis called a

convex metric space

A Banach space and each of its subsets are convex metricsspabere are ex-
amples of convex metric spaces not embedded in any Banach.sphe following two

examples are taken from [49].

Example 3.2.1.Let | be the unit interval0, 1] and X be the family of closed intervals
[ai,bi] such that0 < g <bj <1. For | = [a,b], |; =[aj,bj] and A € |, we define a
mappingy by y(lj,1j, 1) = [1a + (1 - A)aj, Abj + (1 - A)bj] and define a metric d iK' by

the Hausdoff distance, i.e.
d(li, 1j) = maxla; - ajl, |bi - bjl}.

Example 3.2.2.We consider a linear space L which is also a metric space wighfol-

lowing properties:

(@) Forxyel,d(xy) =d(x-y,0);
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(b) For xyeLandae][0,1],

d(Ax+ (1- 1)y, 0) < Ad(x,0)+ (21— 2)d(y, 0).

Hence L, together with the convex structyrex,y, 1) = Ax+ (1—2)y, is a convex metric

space.

Definition 3.2.3. Let X be a convex metric space. A nonempty subset¥is said to be

convexif y(x,y,1) e K, ¥x,ye K andVa € [0, 1].
We define the set valued mappifig P(X) — P(X) as
W(A) = {y(xy,4) | VYxye AVae[0,1]}, (3.2)

whereA is an arbitrary set itX.
In [49] it is shown that, in a convex metric space, an arbjtmatersection of convex

sets is also convex and therefore the next definition makesese

Definition 3.2.4. Theconvex hullof the set Ac X is the intersection of all convex sets in

X containing A and is denoted by @).

Another characterization of the convex hull of a seiins given in what follows.
By defining Am = y(Amn-1) with Ag = A for someA c X, it is discussed in [46] that the
set sequencAm}m=0 is increasing and limsufy, exists, and limsupy, = liminf Ay, =
lim Am = Up_o Am.
Proposition 3.2.1([46]). Let X be a convex metric space. The convex hull of a setA
is given by

co(A) =limAp = OAm (3.3)
m=0
It follows immediately from above that .1 = An for somem, thenco(A) = An.
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3.2.2 On the convex hull of a finite set

For a positive integen, let A = {x1,...,Xn} be a finite set inX with convex hull
co(A) and letz belong toco(A). By Proposition 3.2.1 it follows that there exists a positi
integerm such thatz e Ay,. But sinceAn, = w(Am-1) it follows that there exitg,z> € A1
and 412 € [0,1] such thatz = y(z1,22, A(12)). Similarly, there exitss, 74,275,725 € Am-2
andA34),4s6 € [0, 1] such thatzy = y(z3,21,4(34)) andz, = y(zs,26, A(56)). By further
decomposings,z4,zs andzs and their followers until they are expressed as functions of
elements ofA and using a graph theory terminology, we note thedn be viewed as the
root of a weighted binary tree with leaves belonging to theds&ach noder (except the
leaves) has two childrem; anday, and are related through the operatom the sense
a = y(a1,a2,1) for somea € [0,1]. The weights of the edges connectingvith a1 and
az are given byl and 1- A respectively.

From the above discussion we note that for any ppito(A) there exits a non-
negative integem such thatz is the root of a binary tree of height, and has as leaves
elements ofA. The binary tree rooted atmay or may not be aerfect binary treei.e.

a full binary tree in which all leaves are at the same depthat T because on some
branches of the tree the pointsAnare reached faster then on others. hetlenote the
number of timesg appears as a leaf node, wit]. ; nj < 2™ and letm;, be the length of
theilth path from the rook to the nodex;, for | = 1...n;. We formally describe the paths

from the rootzto x; as the set
P2y = {({Yihj}?lHO’{/lihj}Ezll) 1= 1"'ni}’ (3.4)

where{yilj}?li'o is the set of points forming thig" path, withyj, 0 =z andyil,rnl = X and
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Where{/li,,j}?l'l is the set of weights corresponding to the edges along tines patpartic-

ular 4;, j being the weight of the edgg;(j-1,Vi,,j). We define the aggregate weight of the

paths from rook to nodex; as

n My
W(P.x) = Z]—[ﬁi.,j- (3.5)
=1 j=1

It is not difficult to note that all the aggregate weights of the paths floarootz

to the leaves$xy,...,Xn} sSum up to one, i.e.

D W(Py) =1
i=1

z€As
/ 1-Ags,2)
€A, 7,640,
}l‘:3-'ll 1-?|.|3__-_] 1':5'6:’ 1';‘15.51
z:EA; 2464, 2s€Ay Z:€A,
Ags 1-A7a Ags,10) 1-Ms, 10y
X EA %€M %HEA %EA X EA *:EA % EA XEA

Figure 3.1: The decomposition of a por¢ Az with A = {X1, X2, X3}

Example 3.2.3.Figure 3.1 shows a binary tree corresponding to a poirtAs, where

A = {X1, X2, X3}. For this particular example, the paths from to root z to thaves xare

given by

Pox, = {1z 21,23, X1}, {A(1,2), A43.4), A(7.8)}) , ({Z 71, 24, X1}, {A(1,2), (1 = A3.4)), A(9,10)}) »
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({2 22,25, X1 {(1 - A1.2)), As.6) A1112)) s (2 22, Z6, Xa 1 A(1 — A(1.2)), (1 - A(5.6))- Aaz14))} s
Pzx ={({Z 21, Z3, X2}, {A(1,2), 43,2y, (1 — A7,8)})}
Pzxs = {({Z 21, 24, X3}, {A(1,2), (1 = A3.4)), (1= A9,10)}) . (1Z 22, 25, X3}, {(1 = 21.2)). A5.6): (1 — A1112)}) s
(2 22,26, X3}, {(1 - A(1.2), (1 - A5.6)), (1 - A1314)})}

and the path weights are

W(Pzx,) = 412143 4)A7.8) + 41,2 (1= A3.4))A9,10) + (1 — A(1,2), A5.6)> A(11.12)s
W(P.x) = A12)A3.4)(1— A78));
W(Pzxs) = 412)(1-23.4)(1-4(9.10) + (1 - A1.2)5.6)(1 - A1112) + (1 - 21.2)) (1~ A5.6)) (L - A(1314))-
Definition 3.2.5. Given a small enough positive scakak 1 we define the following sub-
set of c@A) consisting of all points in d@\) whose aggregate weights are lower bounded
bye, i.e.
CO:(A) = {z] ze co(A), W(P.x) > &, VX € A}. (3.6)
Remark 3.2.1. By asmall enoughvalue ofe we understand a value such that the in-

equalityW(P,y) > ¢ is satisfied for all i. Obviously, for n agentseeds to satisfy

Sl

but usually we would want to choose a value much smaller Hiiarsince this implies a

richer set cQ(A).

Remark 3.2.2. We can iteratively generate points for which we can make shatthey
belong to the interior of the convex hull of a finite seEAXxi,...,X,}. Given a set of

positive scalargAs,...,An-1} € (0,1), consider the iteration

Yi+1 = W(Vi, Xi+1,4i) fori=1...n—1with y; = Xg. (3.7)
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Itis not difficult to note that )y is guaranteed to belong to the interior of(@). In addition,

if we impose the condition

s 1-(n-1e L
TS S T o 0 2)8| 1...n-1, (3.8)
ande respects the inequality
1 1-(n-1)e
G 5.9)

then y, € co.(A). We should note that for any=n2 we can find a small enough valuesof

such that inequality (3.9) is satisfied.

The next result characterizes the distance between twaspoine X belonging to

the convex hulls of two (possibly overlapping) finite sktandY.

Proposition 3.2.2.Let X= {x1,..., %} and Y= {y1,...,yn } be two finite sets oX and

let £ < 1 be a positive scalar small enough.
(a) If xe co(X) and ye X then
Nx
doey) < ) Aid(x,y), (3.10)
for somet; > O with 3™ 4; = 1.
(b) If xe co(X) and ye co(Y) then
nx Ny
dixy) < > > 4ijd(x,y)), (3.11)
i=1 j=1
for somet;j > O with 3™ Z 1Aij =
(c) If xe co.(X), ye co.(Y), then

A >eanddij > €% Vi, j, (3.12)

where; and 4j; where introduced in part (a) and part (b), respectively.
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(d) If xe cox(X), ye co.(Y) and XnY # 0, then

ny Ny
D2 AiTdpyeo < 1-62, (3.13)
i=1 j=1

wherejj were introduced in part (b).
Proof. (a) Mimicking the idea introduced at the beginning of thist&m, sincex € co(X)
it follows that there exists a positive integaisuch that € Xy, whereXm,.1 = ¥(Xm) with
Xo = X. Further, there exist, z» € Xm-1 andAs2 € [0, 1] such that = y(z1, 2, 112). Using
the definition of the convex structure, it follows that thetdince betweenandy can be
upper bounded by

d(xy) < A12d(z1,Y) + (1 - A12)d(22, Y).

Inductively decomposing, zo and theirchildren it can be easily argued that

doxy) < ) Aid(x,y),
i=1

for some positive weightg; > 0 summing up to one.
(b) To obtain (3.11) we proceed as in part (a) and obtain uppends ord(x;,y).

More precisely we get that

My
dx.y) < > uid(x.y)), Vi,
j=1

with z1j > 0 andy."” , uj = 1, and it follows that
ny Ny
dixy) < > > ijd(x.y)),
i-1 j=1
whereAjj = Ajuj >0 andzinlez?il/lij =1.
(c) We note thatti = W(Pxx) anduj = W(Py,y,), ¥i, j. But sincex € co,(X) and

y € co(Y) it immediately follows thaflj > ¢ andu; > &, and thereforaljj = 2.
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(d) If XN'Y # 0 then there exists at least one paifj) such thad(x;,y;) = 0. But

sincel;j > &2 the inequality (3.13) follows. O

3.3 Problem formulation and statement of the main result

We consider a convex metric spacé () and a set oh agents indexed bywhich
take values oiX. Denoting byk the time index, the agents exchange information based on
a communication network modeled by a time varying gr&gk) = (V, E(K)), whereV is
the finite set of vertices (the agents) &) is the set of edges. An edge (communication
link) &;(k) € E(K) exists if nodei receives information from nodg¢ Each agent has
an initial value inX. At each subsequent time-slot is adjusting its value baseth®
observations about the values of its neighbors. The goalechgents is to asymptotically
agree on the same value. In what follows we denote;fk) € X the value orstateof

agent at timek.
Definition 3.3.1. We say that the agents asymptotically readmsensugor agreement)
if
kIim d(xi(k), xj(K)) =0, Vi, j, i # ]. (3.14)
Similar to the communication models used in [52], [4], [34& impose minimal as-
sumptions on the connectivity of the communication grggk). Basically these assump-

tion consists of having the communication graph connettéditely oftenand having

bounded intercommunication interva¢tween neighboring nodes.

Assumption 3.3.1(Connectivity) The graph(V, E) is connected, where Eis the set of
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edgeq(i, j) representing agent pairs communicating directly infiritelany times, i.e.,
Ew ={(i, ) | (i, j) € E(K) for infinitely many indices k

Assumption 3.3.2(Bounded intercommunication intervalfhere exists an integer B1
such that for everyi, j) € E., agent j sends its information to the neighboring agent i at
least once every B consecutive time slots, i.e. at time kmatk+ 1 or ... or (at latest)

at time k+ B— 1 for any k> 0.
Assumption 3.3.2 is equivalent to the existence of an intBge 1 such that
(i,)) e E(UE(k+1)U...UE(k+B-1), ¥(i, j) € E, andVk.

Let Ni(k) denote the communication neighborhood of agemthich contains all
nodes sending information toat timek, i.e. Ni(k) = {j | &j(k) € E(K)} U{i}, which by
convention contains the nodétself. We denote by (k) = {xj(K), V] € Ni(K)} the set of
the states of agens neighbors (its own included), and Byk) = {x;(k),i = 1...n} the set
of all states of the agents.

The following theorem states our main result regarding gargtotic agreement

problem on metric convex space.

Theorem 3.3.1.Let Assumptions 3.3.1 and 3.3.2 hold fdk{zand lete < 1 be a positive

scalar syficiently small. If agents update their state according toghleeme
Xi(k+ 1) € co.(A (K)), Vi, (3.15)
then they asymptotically reach consensus, i.e.
klITgod(Xi(k),Xj (K) =0, Vi, j, i #]. (3.16)
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Remark 3.3.1. We would like to point out that the result refers strictly ve@ tonvergence

of the distances between states and not to the convergertbe sfates themselves. It
may be the case that the sequenpe&)}k-0 i = 1...n do not have a limit and still the
distances ¢ki(k), xj(k)) decrease to zero as k goes to infinity. In other words the agent
asymptotically agree on the same value which may be verywaglible. However, as
stated in the next corollary this is not the case and in faet skates of the agents do

converge to the same value.

Corollary 3.3.1. Let Assumptions 3.3.1 and 3.3.2 hold fdk{zand lete < 1 be a positive

scalar syficiently small. If agents update their state according toghleeme

Xi(k+ 1) € co:(A (K)), Vi, (3.17)
then there exists* X such that

kll_r)rgo d(xi(k),x") = 0, Vi. (3.18)

We will give the proofs for both Theorem 3.3.1 and Corollar$.3 in the subse-

guent section.

Remark 3.3.2. A procedure for generating points that are guaranteed tobglto cq(A; (k)
is described in Remark 3.2.2. The idea of pickin@x x 1) from cq.(Ai(k)) rather than
co(Ai(K)) is in the same spirit of the assumption imposed on the nam-@emsensus
weights in [51], [34], [4], i.e. they are assumed lower bowadby a positive, sub-
unitary scalar. Setting ¥k + 1) € co(Ai(k)) may not necessarily guarantee asymptotic
convergence to consensus. Indeed, consider the case wher with the standard
Euclidean distance. A convex structure Bnis given byy(x,y,1) = Ax+ (1 - 2)y, for
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any Xy € R and 1 € [0,1]. Assume that we have two agents which exchange informa-
tion at all time slots and therefore1hk) = {x1(K), x2(k)}, A2(K) = {X1(K), x2(K)}, Yk > O.
Let x(k+ 1) = A(K)x1(K) + (1 — A(K))x2(k), whereA(k) = 1-0.1e X and let »(k+ 1) =
u(K)x1(K) + (1 - u(k))x2(K), whereu(k) = 0.1e7K. Obviously, xk+ 1) € co(A(K)), i = 1,2

for all k > 0. It can be easily argued that
d(xa(k+ 1), Xa(k+ 1)) < (A(K)(1 = u(K) + (k) (1 - A(K))) d(xa(K, X2(K)))- (3.19)

We note thatimk e [T5q (A(K)(L - x(K) + (L= AK)(K) = liMk o0 [T (1 - 0.267% +
0.02e"%) = 0.73 and therefore under inequality (3.19) asymptotic convecgeto con-
sensus is not guaranteed. In fact it can be explicitly shdva the agents do not reach
consensus. From the dynamic equation governing the ewalofi x(k), i = 1,2, we can

write

AK) 1-a(k)
X(k+1)= X(K), x(0) = Xo,

pu(k)  1—p(k)

wherex(k)T = [x1(K), x2(K)], and we obtain that

0.8540 01451
kIim X(K) = X0
~ 0.1451 08540

and therefore it can be easily seen that consensus is ndbeglfcom any initial states.

3.4 Proof of the main result

This section is divided in three parts. In the first part we thgeresults of Section
3.2.2 regarding the convex hull of a finite set and show thatehtries of the vector
of distances between the states of the agents atkimk are upper bounded by linear
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combinations of the entries of the same vector but at kmkhe codicients of the linear

combinations are the entries of a time varying matrix forahhive prove a number of
properties (Lemma 3.4.1). In the second part we analyzertbgepties of the transition
matrix of the aforementioned time varying matrix (Lemma23)4The last part is reserved

to the proof of Theorem 3.3.1.

Lemma 3.4.1. Given a small enough positive scalax 1, assume that agents update
their states according to the schemkx 1) € co.(Ai(K)), for alli. Letd(k) £ (d(xi(k), Xj(K)))
for i # j be the N dimensional vector of all distances between thestaf the agents,

where N= ”(”2‘1). Then we obtain that

d(k+ 1) < W(k)d(k), d(0) = do, (3.20)
where the Nk N dimensional matri¥V(k) has the following properties:
(&) W(K) is non-negative and there exits a positive scajar(0, 1) such that
(W= 7. ¥ ik (3:21)
[WKIF> 7, ¥ [WERIT#0, i #j, Yk (3.22)

(b) If Ni(k)NNj(K) # 0, then the row of matrix W(K), corresponding to the pair of agents
(i, ), has the property

N
D IWRIy<1-n, (3.23)
ji=1

wheren is the same as in part (a).

(c) If Ni(K N Nj(K) = 0 then the row corresponding to the pair of agen(s j) sums up
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to one, i.e.

N
D WKy =1 (3.24)

=1

In particular if G(k) is completely disconnected (i.e. agents do not send anymiafo
tion), thenW(k) = I.
(d) the rows oW(k) sum up to a value smaller or equal then one, i.e.
N J—
D IWERIF< 1 Vik (3.25)
=1
Proof. Given two agents and j, by part (b) of Proposition 3.2.2 the distance between
their states can be upper bounded by
dosk+ D) xjk+ 1)< >0 WK, Xq(K), T ), (3.26)
PeNi(K).aeN;(K)
wherewjq(K) > 0 andy. pen; o.qen; (9 Wag(K) = 1. By definingW (K) = (wiqy(K)) for i # j and
p # g (where the pairs(j) and (p, q) refer to the rows and columns¥f(k), respectively),
inequality (3.20) follows. We continue with proving the pesties of matrix\V (k).

(a) Since alw)y(k) > 0 for alli # j, p e Ni(k) andq € AVj(K) we obtain thatV (k) is
non-negative. By part (c) of Proposition 3.2.2, there exjst &2 such that/\fgq(k) > n for
all non-zero entries ofV (k). Also, sincei € Nj(k) and j € Nj(k) for all k> O it follows
that the termNH (K)d(x (K), X (K)), with w:j (K) > 1 will always be present in the right-hand
side of the inequality (3.26), and therefdhgk) has positive diagonal entries.

(b) Follows from part (d) of Proposition 3.2.2, with= £2.

(c) If Ni(K N Nj(K) = 0 then no terms of the forrwigp(k)d(xp(k), Xp(K)) will appear

in the sum of the right hand side of inequality (3.26). HedGR v (k).qen; () vvirj,q(k) =1
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and therefore

N
D IWRI= 1.
j=1
If G(K) is completely disconnected, then the sum of the right hatedaf inequality (3.26)
will have only the term! (K)d(x(K), x;(K)) with w! (K) = 1, for alli, j = 1...n. Therefore
W(K) is the identity matrix.

(d) The result follows from parts (b) and (c). m|

LetG(K) = (V, E(K)) be the underlying graph &% (k) and leti and | refer to the rows
and columns ofV(K), respectively. Note the under this notation, indlerrresponds to a

pair (, j) of distinct agents. It is not @icult to see that the set of edges@(k) is given
by

E(K) =1((, ) (p. @) 1 (- p) € E(K), (1, 0) € E(K),i # ], p#q}. (3.27)
Proposition 3.4.1.Let Assumptions 3.3.1 and 3.3.2 hold fakkz Then, similar proper-
ties hold forG(k) as well, i.e.
(a) the graph(V, E.,) is connected, where
Ee = {(,]) | (i, j) € E(K) infinetly many indices}k
(b) there exists an integdB > 1 such that everyj, j) € E., appears at least once every

B consecutive time slots, i.e. at time k or at timeXor ... or (at latest) at time

k+B-1for any k> 0.

Proof. It is not difficult to observe that similar to (3.27.. is given by

Ewo = {((, ) (P. ) | (i, P) € Eco, (J, P) € Eco, P# Q1 # ). (3.28)
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(a) Showing thatV{, E.) is connected is equivalently to showing that for any two
pairs {, j) and (p,q) there exits a path connecting them. SingegE(,) is assumed con-
nected, there exits a paify— i1 — ...,— Ij_1 — i, for somel < n, such thaig = p and
iy =i. From (3.28), it is easily argued thab,(j) — (i1, )) — ... = (ij=1,]) — (i1, ]) rep-
resents a path connectinigj) with (p, j). Similarly, there exits a pathp — j1 — ... —
jm-1 — Jm for somem < n, such thatjo = g and jm, = j. Therefore, p, jo) — (p, j1) —

... > (p, Jm-1) = (p, jm) is a path connectingx j) with (p,q) and it follows that ¥, j) and
(p,Q) are connected.
(b) Let (G, j), (p,q)) be an edge ifE., or equivalentlyi, p) € Ew and (j,q) € Ec. By

Assumption 3.3.2, we have that for akyg O
(i,p) e E(KUE(k+1)...UE(k+B-1),
(j,q) € E(KUE(k+1)...UE(k+B-1),
where the scalaB was introduced in Assumption 3.3.2. But this also implied th
(i,j) e E(UEK+1)U...UE(k+B-1), ¥(i, ) € Eco.
ChoosingB 2 B, the result follows. O

Let d(k,s) 2 W(k—1)W(k-2)---W(s), with d(k,k) = W(K) denote the transition
matrix of W(Kk) for anyk > s. It should be obvious from the propertieswfk) thatd(k, s)

is a non-negative matrix with positive diagonal entries gh(k, s)||.. < 1 for anyk > s.

Lemma 3.4.2.LetW(k) be the matrix introduced in Lemma 3.4.1. Let Assumptiong 3.3

and 3.3.2 hold for @). Then there exits a row indéxsuch that

N
Z[d)(s+ moFr<1-5"vsm>B-1, (3.29)
ji=1
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wheren is the lower bound on the non-zero entries/dfk) and B is the positive integer

from the part (b) of the Proposition 3.4.1.

Proof. Let (i, j*) € E be a pair of agents. By Assumptions 3.3.1 and 3.3.2, thets &xi
positive integes’ € {s,s+1,...,5+ B- 1} such that agent’ sends information to agerit
at times’. This implies thaivi: (k) " Nj:(K) # @ and by part (b) of Lemma 3.4.1, we have

that
N

DIWES)rj<1-n,

j=1

wherei* is the index corresponding to the pair, (*). The sum of thé* row of transition

matrix ®(s' + 1, s) can be expressed as

N N N
2N +L9y= Y WE)RT Y IS, 9y
h=1

j=1 j=1
But since||®(k, 9)|l < 1 for anyk > s, we have thaghh':l[d)(s’,s)]j—h <1 for anyj, and
therefore

N
Do +19]r7< 1-n. (3.30)
j=1

We can write®(s' +2,s) = W(s' + 1)®(s + 1,s) and it follows that the* row sum of

®(S +2,) can be expressed as

N N N
DO +2.957= Y IW(S + Dl ) [0S + 19

j=1 j=1 h=1

SincexN [®(s +1,9)]5 < 1 for anyj it follows that

N
D [0S +2, 95 < [W(S + Dl ) [0S + L9lsp+ ), IW(S +D)fj<

N
j=1 h=1 j=1,j#i*

N
<WE+DEr-n)+ Y W+ D<) WS + Dl =W + Dl <1-17%
j=1j#i* j=1
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since W(s' +1)J+# > n. By induction it can be easily argued that
N
Z[q)(s’ +m9fFr<1-7", ¥Ym> 0. (3.31)
=1
Note that by Assumption 3.3.2, a paiisj) can exchange information gt= sthe earliest

or ats' = s+ B- 1 the latest. From (3.31) we obtain that &= s+B-1

N
Z[d)(s+ B-1+m9)ry<1-7™ vm>0, (3.32)
ji=1
and fors' = s
N
Z[d)(s+ m9lrr< 1-4™, Ym=>0,
ji=1
or
N
D Id(s+B-1+m95j<1-7™5 vm=0, (3.33)

j=1
From (3.32) and (3.33) we get

N
Z[CD(S+ B-1+m9Jrr<1-n™B1 vysm>0,
j=1

or equivalently

N
Dlo(s+m 9y 1-4" vm2 B-1. (3.34)
ji=1

Corollary 3.4.1. Let W(K) be the matrix introduced in Lemma 3.4.1 and let Assumptions

3.3.1 and 3.3.2 hold for (). We then have
[®(s+(N-1)B-19]; > 7N DB vsij, (3.35)

wheren is the lower bound on the non-zero entried/dfk) and B is the positive integer
from the part (b) of the Proposition 3.4.1.
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Proof. By Proposition 3.4.1 and Lemma 3.4.1 all the assumptionseofima 2, [34] are

satisfied, from which the result follows. O

We are now ready to proveheorem 3.3.1andCorollary 3.3.1.

3.4.1 Proof of Theorem 3.3.1

We have that the vector of distances between the states afgtmes respects the
inequality

d(k+1) < W(K)(K),

where the properties &V (k) are described by Lemma 3.4.1.

It immediately follows that
ld(k+ 1)lleo < [|[d(K)||0, fOr k> 0. (3.36)

Let By = (N-1)B-1, whereB is the positive integer from the part (b) of the
Proposition 3.4.1. In the following we show that all row suonfs®(s+ 2By, s) are
upper-bounded by a positive scalar strictly less than ondedd sinceb(s+ 2Bg, s) =

®(s+ 2Bg, S+ Bo)®(s+ By, S) we obtain that

N N N
Z[cp(s+ 2Bo, 9)Iij = Z[cp(s+ 2Bg, S+ |§o)]WZ[q>(s+ Bo. 9l Vi
j=1 j=1 h=1

By Lemma 3.4.2 we have that there exists a fidwuch that

N _
D [0(s+Bo, 9] < 1-1™,¥s
h=1
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and sincexN [®(s+Bo, 9)]j < 1 for anyj, we get

N N
D [®(s+2Bo, I < Z [®(s-+ 2Bo, s+ Bo)li+ [®(s+ 2Bo, s+ Bo)lij (1 - ™) =

j=1 i=Lj#j*

N
_Z[cp(s+ 2By, s+ Bo)lij— [®(s+2Bo, 5+ Bo)l;j:n®
J:

By Corollary 3.4.1 it follows that

[D(s+ 2§0, S+ §0)]HZ 77§0+1, Vi_, ]_, S,
and sincey, ;ﬂ:l[CD(s+ 2By, Bo)li7 < 1 we get that

N - —
> [0(s+2Bo, 9] < 1-n*>* vi,s
ji=1

Therefore

ID(s+ 2Bo, 9lleo < 1— 72801 vs (3.37)

It follows that
d(tleo < (2-722L) (O, VK 2 O, (3.38)

wherety = 2kBy which shows that the subsequertid(tk)ll- k=0 asymptotically con-
verges to zero. Combined with inequality (3.36) we farthbtam that the sequence
{Ild(K)ll- k=0 @asymptotically converges to zero. Therefore the agentsptically reach

consensus.

3.4.2 Proof of Corollary 3.3.1

The main idea of the proof consist of showing that theceéf(k)), whereA(k) =
{xi(k),i = 1...n}, converges to a set containing one point.
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We first note that sincA; (k) € A(K) it can be easily argued thed(A; (k)) € co(A(K)),
for all i andk. Also, sinceco.(Ai(K)) € co(A(K)) it follows thatco.(Ai(k)) < co(A(k)) and
consequently;(k+ 1) € co(A(K)). Therefore, we have thab(A(k+ 1)) € co(A(k)) for all

k and from the theory of limit of sequence of sets, it followatth
liminf co(A(K)) = limsupco(A(K)) = lim co(A(K)) = A,
whereA, = Nis0CH(A(K)). We denote the diameter of the k) by
6(A(K) = sudd(x.y) | x.y € A(K)},
and by Proposition 2 of [46] we have that
6(co(A(K))) = 6(A(K)).
From Theorem 3.3.1 we have that
Jim d(xi(k), x;(K)) = 0, Vi # |,
and consequently
Jim 5(A(k)) = lim d(co(A(k)) =0,
which also means that
6(Ax) =0,
i.e. the sefA,, contains only one point, say € X, or A, = co(X*), or
kI|_r)r(]o co(A(k)) = co(X).
But sincex;(k+ 1) € co.(Ai(k)) € co(A(k)) for all i,k it follows that
Jim d(xi(k),.x") =0,V 1,
i.e. the states of the agents converge to the same pomk.
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3.5 Distance between the consensus points and the iniiiatispo

In this section we analyze the evolution of the distance betwthe states of the
agents and their initial values under the scheme descrip@&tidorem 3.3.1. This analysis
will give us upper bounds on the distance between the consgr@nt(s) and the initial
values of the agents.

Consider distancd(x;(k), x(0)) for somd,| and let us assume thg(k+ 1) is cho-
sen according to the scheme described by Theorem 3.3.X;(kex 1) € co.(Ai(K)). By

part (a) of Proposition 3.2.2 we can express this distance as

doi(k+ 1) x0) < > 4ij(K)d(xj(K), x(0), (3.39)
JeNi(K)

where 4ij(K) > & and ¥ jen; k) 4ij(K) = 1. By defining then dimensional vectop! (K) =
(d(xi(K), x(0))) (wherei varies) and the@x n dimensional matrix\ (k) = (ij(K)), inequal-

ity (3.39) can be compactly written as

p (k+1) < A(R' (K), 1(0) = gy (3.40)

whereA(K) is a row stochastic matrix. It is notficult to note that the underlying graph
of A(K) is G(k) and that in fact inequality (3.40) is valid for ay In the following
proposition we give upper bounds on the distance betweenahsensus states and the

initial values of the states.

Proposition 3.5.1.Let Assumptions 3.3.1 and 3.3.2 hold faikizand let the states of the

agents be updates according to the scheme given by Theoden Ble then have that

Jim d(xi(k), x(0)) < Z vid(xj(0),x(0)), ¥ i.l, (3.41)
=1
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where v= (vj) is a vector with positive entries summing up to one satigfyin
lim AR)AK=1)---A(0) = v, (3.42)

and wherel is the n dimensional vector of all ones andk) is the matrix defined in

inequality (3.40).

Proof. Our assumptions fit the assumptions of Lemmas 3 and 4 of [} Where (3.42)

follows. Therefore by inequality (3.40) the result follaws O

Remark 3.5.1.f in addition to the assumptions of Proposition 3.5.1 wevassume that

A(K) is doubly stochastic, then by Proposition 1 of [34] we gettha

1

; _ T
lim AA(K-1)---A(0) = 211",

Therefore, inequality (3.41) gets simplified to

. 13 .

lim d(x (). % (0)) < ~ ,Z; d(x;(0), x(0)). Vi.
The assumptions in this remark correspond to the assungtiorihe average consensus
problem in Euclidean spaces. For the aforementioned casecdnsensus point is given
by the average of the initial points, i.e.q= %Zi”:lxi(O). It can be easily check that
indeed %, satisfies

1 n
IXav=% (O)I < ;nxj(m—n(om,

where|| - || represents the euclidean norm.

3.6 Application - Asymptotic consensus of opinion

Social networks play a central role in the sharing of infotioraand formation of
opinions. This is true in the context of advising friends dmiath movies to see, relaying
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information about the abilities and fit of a potential new éogpe in a firm, debating the
merits of politicians. In the following we consider a sceaan which a group of agents
try to agree on a common opinion. Assume for example that apgod friends would

like to go to see a movie. Berent members of the group may suggeffedent movies.

A member of the group discusses with all or just some ghleisfriends to find out about
their opinions. This member gives some weight (importat@é)e opinion of his friends
based on the trust in theixpertise For instance some members of the group are more
informed about the quality of the proposed movies, and thez¢here opinions may have

a heavier influence on the final decision. By repeatedly dsiog among themselves, the
group of friends have to choose one of the movies.

In the following we mathematically formalize the scenarescribed above and
show that we can use the framework introduced in the prewegtions to give an al-
gorithm which ensures asymptotic consensus on opinionsmddel the opinion of a
member of the group (agent) as a discrete random variabléelam appropriate metric
and by providing a convex structure we show that the metracef discrete random
variable is convex . In addition, we analyze in more detal¢bnvex hull of a finite set;
this analysis is possible since the convex structure isngasplicitly. We give an itera-
tive algorithm that ensures agreement of opinion, whichaiseld on Theorem 3.3.1 and

provide some numerical simulations.
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3.6.1 Geometric framework

Let s be a positive integer, 18 = {1,2,..., s} be a finite set and leY, 7,P) be a
probability space. We denote % the space of discrete measurable functions (random
variable) on Q, ¥, %) with values inS.

We introduce the operatar: X x X — R, defined as
d(X,Y) = E[p(X, Y)],

wherep : R xR — {0,1} is the discrete metric, i.e.

1 x#y
p(Xy) =
0 x=y

It is not difficult to note that the operatdrcan also be written ad(X,Y) = E[1xxy;] =
Pr(X #Y), wherelx.yv, is the indicator function of the evefX # Y}.

We note that the operatdrsatisfies the following properties
1. ForanyX,Y € X,d(X,Y) =0 if and only if X = Y with probability one.
2. ForanyX,Y,Z € X, d(X,Z) +d(Y,Z) > d(X,Y) with probability one,

and therefore is a metric ak. The setX together with the operatat define the
metric spac€X,d).

Let 8 € {1,2} be an independent random variable, with probability masstfan
Pr(¢ =1)=AandPr(0 =2)=1- 2, wherea € [0,1]. We define the mapping : X x X x

[0,1] — X given by

W(X1, X2, 2) = Ljg=1y X1 + Ljp=py X2, VX1, X2 € X, 1€ [0, 1]. (3.43)
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Proposition 3.6.1. The mappingy is a convex structure oN.

Proof. For anyU, X1, X2 € X andA € [0,1] we have
d(U, w(X1, X2, 1)) = E[o(U, (X1, X2, 1))] = E[E[o(U, (X1, X2, 1)U, X1, X2]] =

= E[E[o(U, 1{p=1y X1 + L{9=2)X2)]|U, X1, Xo] = E[1p(U, X1) + (1 - 2)p(U, X2)] =

= 2d(U, X1) + (1— 2)d(U, Xo).

From the above proposition it follows thaX (d, ) is aconvex metric space

The next theorem characterizes the convex hull of a finitens&t

Theorem 3.6.1.Let n be a positive integer and let-A{X1,..., Xy} be a set of points in
X. Consider the independent random variableaking values in the finite s¢l,...,n},
with probability measure given by Rv : 6(w) = i) = w;, for some non-negative scalars
wi, with 3, wi = 1. Then
n n
CO(A) = {ZGX | Z:Z]l{g:i}xi, YW, zo,Zwi = 1}. (3.44)

|:1 |:1

Proof. We recall from Proposition 3.2.1 that the convex hulkaf given by
co(A) = lim A = {_] An,
m=1

whereAm = y(Am-1), with A; = y(A). Also, sinceA, is an increasing sequence, clearly

Ac Ay for all m> 1. We define the set

n

n
KA = {Z €X|Z= Z]l{e:i}xi, YW, ZO,ZWi = 1}.

|:1 |:1
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The proof is structured in two parts. In the first part we shbat tany point ink'(A)
belongs to the convex hull &, while in the second part we show that any pointaA)
belongs toK(A) as well.

LetZe K(A)i.e.Z= Y 1p=iyX wherePr(0 =i) =w;, for somew; >0, Y, , w; =
1. The random variableis defined such tha(wi) =i andPr(wi) = w;. LetQ; = {w}, wb},
i =1...n-1 be a set of independent sample spaces (i.e. the elememmnys«eij andw'p
are independent for ay i and for anyj). We define the probability measure for each

of the events if); as

; W1+...+W_
Pr(w)) = —— T4
Wi1+...+W,
. Wi
Pr(wh) = ————,
W1+...+W,

fori =1...n—1. We consider the following succession of events f@m

Sy =

{ 1‘*’%
S, = {w%w% ... a)g'l} , (3.45)
=2

1 i-2 -1 1 n-1| ; _ _
oW Wy Wy -] },|—3...n 1,

j1.. llzl{ Ji-2

UJ1 Jn-2= 1{ 111 ) w? zzwg }

For example, fon = 4 (3.45) becomes

S1= {wiw%w?},

Sy = {w%wiw‘z’},

S3= {wiw%w?} U {w%w%a)i}

Sy= {w%w%wg} U {w%w%wg} U {w%w%wg’} U {w%w%wg’}.
Using the independence assumption on the events €pis not dificult no see

that
Pr(Sj)=w, i=1...n.
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Assume that each eveat that we observe can be decomposed in a succession of inde-

pendent events frof;, which are invisible to the observer. In particular let
wi=Sj,i=1...n

The particular decomposition of evednt in a set of intermediate, independent events
given by S; makes sense since bath and S; have the same probability measure. It

immediately follows that
Liwo)=iy = Liwy = Lisy)- (3.46)

Let us now define the random variablgs Q; — {i,i + 1}, where
Bi(w)) =i, Oi(wh) =i+1,

fori=1...n-1. Obviously

Wi+...+Wi-1
Wi+...+W,

Pre=itl)=

Pr(6 = i) = —w

andg; are independent random variables.
From (3.45) and (3.46) together with the independence ofgdhdom variables,
the following equalities in terms of the indicator functiare satisfied
Lig=1y = 11 gy
Ligiy = Lig =T M gy=jy, 1= 2...n -1 (3.47)
Lig=n} = L{61=n}-

From (3.47) it follows thaZ is the result of tha" step of the iteration

Yitr = Lig=i)Yi + Lig=iz 1y Xi+1,
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fori=1...n, with Y1 = X1, i.e. Z=Y,. It can be easily argued thate Ai_1, i =2...n
and therefor& € A,_1 or Z € co(A) which implies thatK'(A) c co(A).

We now begin the second part of the proof and show that any pooa(A) belongs
to K'(A) as well. IfZ € co(A), from Section 3.2.2 we have that there exits a positiveyeite
m such thatZ € Ay, and therefore is the root of a binary tree of height with leaves
from the setA. Using the same notations as in Section 3.2.2 for each oétfenbdes;,
there existsy > 1 paths fron¥ to X;, of lengthsm, | = 1...n; which are denoted by

Pzx = {({Yi.,j}?l'o,{ﬂi.,j}?l'l) |l = 1...ni},

wherey;, j_1 = W(Yil,j,*,/lil,j) for j=1...my,|=1...n and where we denoted bBysome
intermediate node in the tree. We introduce the independamiom variables;, j such

thatPr(6;, j = i1, J) = 4;,,j andPr(6;, j = *) = 1 -4 ;. It follows thatZ can be expressed as

n

n; m|
Z= Z[ l_l]l{w39i|,j=il,j}]xi
i= 1j=1

1\I=

Using again the independencedyf; we have that

n m|
Liwe, =iy =1, n ™, . .
;g {w 1.J ] ]} {U|n=|1mj=|1{w-6i|,j:||sl}}

LetS; = {Ullm?lll{w L 0i,j =11, j}} and let us interpret the events$nas the set of

underlyingsub— eventggeneratingu; i.e. wj = S;. It is not difficult to see that
Pr(wi) = Pr(Si) = W(Pzx).

By definingw; = ‘W(Pzx) we get thafy,! , Pr(w;) = 1. Note that if there exits airi such
thatX;- is not among the leaves of the binary tree rooted, dhe measure of the event

is zero. Therefore we have thattan be expressed as

n
Z= Z Ty Xi = Z]l{e:i}xi,
. ~

n
i=1 i
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wherePr(6 = 1) = w; and hence it follows thal € K'(A) and consequentigo(A) c K (A).

From part one and part two of our proof, the result follows.

Remark 3.6.1. We say that 4s betweenX; and X if d(X1,Z) +d(Z, X2) = d(X1, X2). For

any two points X X, € X, the set
{Z € X[d(X1,2) +d(Z, X2) = d(X1,X2)},

is calledmetric segmenand is denoted bjX1, X2]. We note that any point ZX belong-
ing to the convex hull of XX> is on the metric segment betweenatd %. Indeed, if
Z € co({X1,X2}) then Z= g1y X1 + L=, X2, Wwhere P(¢ =1) =1 and P(6 =2) = 1-2,

for somed € [0, 1]. It follows that
d(X1,2Z) +d(Z X2) = E[p(X1,2Z) + p(Z X2)] = E[E[p(X1.Z) + p(Z, X2)]1X1, X2] =

= E[1p(X1, X2) + (1 = )p(X1, X2)] = d(X1, X2).

However, not every point belonging to the metric segriéniXs] belongs to cf( X1, X2}).
Indeed, assume for example that X € {1,2} and consider a random variableZ{1, 2}
whose probability mass function, conditioned on the valfeX; and X is given by
Pr(Z=2X1=2,X=1)=1, Pr(Z=1X; =2, X =1)=1-A, Pr(Z=1X; = 1, X, = 2) = 1,
PrZ=1X;=1Xo=2)=1-1and P(Z=2[X; =2, X, =2)=Pr(Z=1X; =1, X = 1) =
1, for somed # 1 € (0,1). Since P(Z =2/X1 =2,Xo =1)# Pr(Z = 1|X1 = 1, Xo = 2) it
follows that Z¢ co({X1, X2}). However it can be easily checked tha& X1, X2]. In fact

any random variable Z whose probability mass function ctioked on the values of1X
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and X satisfies

Pr(Z = 21Xy = X1, X2 = X2) = 0, Z Pr(Z=2Xy=xXo=x) =0,

ZEX £ XD Z#X

belongs to the metric segmddy, Xo].

Corollary 3.6.1. Let n be a positive integer and let-A{X,...,X,} be a set of points in
X. Consider the independent random variableaking values in the finite sét,...,n},
with probability measure given by Rv : 6(w) = i) = w;, for some non-negative scalars

wi, with 30, wi = 1. Then

n n
co:(A) = {Z eX|Z= Z]l{gzi}Xi, Yw; > s,Zwi = 1}. (3.48)
i=1 i=1
Proof. Follows immediately from Definition 3.2.5 and Theorem 3.6.1 O

Recall the discussion introduced by Remark 3.2.1 on whatnelerstand by a small

enough value of.

3.6.2 Consensus of Opinion Algorithm

We assume that each agent of a group afjents has amitial opinion. We model
the set of opinions by a finite set of distinct integers, Say{1,2,..., s} for some positive
integers, where each element 8findicates an opinion. The goal of the agents is to reach
the same opinion by repeatedly discussing among themselves

Denoting as before bit the time-index and bys(k) = (V, E(k)) the time varying
graph modeling the communication network amongrtlagents, we model the evolution
of the opinion of an agentas a random proce3$(k), whereX;(k) € X for all k > 0. Each
agent has an initial opinior¥;(0) = >g? € S with probability p; > 0, with 3'°  pji = 1.
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Corollary 3.6.2. Let Assumptions 3.3.1 and 3.3.2 hold foik{z Given a small enough,
positive scalare < 1, assume that at every time-slot each agent i rolls an imagina
dice with|Nj(k)| facets numbered frorh to |Nj(K)|, independently of the other agents.
The probability that the result of a dice roll isgj Ni(K), is wj(K) with w;j(k) > £ and
YieniyWij(K) = 1. The agent i updates its state according to the followingsuh If the
result of the dice roll is j then agent i chooses the opinioagént j. We then have that

the agents asymptotically agree on the same opinion, i.e.
Jim d(Xi(k), X;(K)) = 0,vi, ]

Proof. By modeling the dice of agenas an i.i.d. random proceggk) € {1,2,...,|Ni(K)|}
such thatPr(6;(k) = j) = wij (k) for all j € Nj(k) and for alli,k > 0, the update scheme of

agent can be formally written as

Xik+1)= > Tigo=)Xi(K). (3.49)
JENTR)

However this implies thaX;(k+ 1) € co:(Ai(k)), i,k and the result follows from Theorem

3.3.1. .

3.6.3 Probabilistic analysis of the consensus algorithm

In this section we give a probabilistic analysis of the corsses of opinion algorithm
introduced in the previous section. We discuss about tfierdnt modes of convergence
to agreement (from a probabilistic point of view) and we gare alternative proof of
Corollary 3.6.2 using purely probability theory argumerntsaddition, we discuss about
the convergence in distribution of the states of the agenésgarticular random variable
and we redefine the notion afferage consenstiom R" to fit the metric spac«.
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Corollary 3.6.2 shows that under the proposed scheme tiendes between the
states of the agents converge to zero. However, skhcea space of discrete random
variables, we can say more about the modes of convergenhe efdtes of the agents.

Recall that we defined the distance between two po{niX, € X as
d(X1, X2) = E[p(X1, X2)] = Pr(Xy # Xz).
From Corollary 3.6.2 we have that
lim d(Xi(). X;(K)) = 0,
or equivalently
kI|_r)rg0 Pr(Xi(k) # X;(k)) = 0. (3.50)

This says that the measure of the set on wiXgk) andX;(k) are diferent converges to
zero ak goes to infinity, i.ethe agents asymptotically agree in probability serisevhat
follows we show that in fact the agents asymptotically agveh probability one (or in
almost sure sense).

Given an arbitrarg > 0, we define the event
Bi(e) = {w: rpfjtxlxi (K) = X;(K)l > €}.

An upper bound on the probability of the evdBi(e) is given by

Pr(Bi(e)) = Pr(Uisj {w: 1Xi(K) - Xj(K)| > €}) <
< Tisj Pr(IXi(k) = Xj(0)] > €) < Ziej Pr(Xi(K) # X;(K)).

From (3.50) and (3.51) we obtain

(3.51)

lim Pr (By(e)) = 0.
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Recall that by inequality (3.38¥(Xi(k), X;(K)) = Pr(Xi(k) # X;(K)), Vi, j converge at least

geometrically to zero. Therefore

D Pr(B(e)) <,

k>0

and by the Borel-Cantelli lemma we have that

Pr(Bk(e) happens infinetely ofters) O.
Equivalently, this also means that

Pr(kli_rl]o rpiaj\x|xi (k) = XK = O) =1,

or that the agents asymptotically agree with probabilitg.on

In the following we show that the same result can be obtainedding purely
probability theory arguments. For simplicity we assumé thea communication network
remains constant and connected and that théicmantsw;; from the agreement scheme

are constant as well.

Proposition 3.6.2. Let the graph modeling the communication network be timariaxt
and connected and let the agents update their state acaptdithe scheme described in
Corollary 3.6.2, where yy > 0 are assumed constant for alk0. We then have that the

agents asymptotically agree with probability one, i.e.
Pr kIim max|Xi(k) - Xj(k)| = 0] = 1. (3.52)
—00 |#]

Proof. We define the random procegék) = (X1(k), Xo(K), ..., Xn(K)) which has a maxi-

mum of s° states and we introduce thgreement spacas

A={(0,0,...,0) |0 S}
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We saw earlier that the state update dynamics is given by

Xi(k+1)= > Tg=3XiK),
JeN;

where Pr(6;(k) = j) = wij, for all j € Nj and for alli. The conditional probability of

Xi(k+ 1) conditioned orK;(Kk), j € N is given by

Pr(Xi(k+1) = 0ilX(K) = 0}, j e M) = >" WijT 00 (3.53)
oy

It is not difficult to note tha# (k) is a finite state, homogeneous Markov chain. We
will show thatZ (k) hass absorbing states and all otheSr s states are transient, where the
absorbing states correspond to the states in agreemeret gpddsing the independence
of the random procességk), the entries of the probability transition matrix k) can

be derived from (3.53) and are given by

Pr(Xy(k+1)=0....,Xn(K+ 1) = 01, [X1(K) = Op,. ... Xn(K) = Op,) = (3.54)

n
= l_[ Z Wij Lli=p;)-

i=1 jeN;

We note from (3.54) that once the process reaches an agrestagnit will stay there

indefinitely, i.e.
Pr(Xi(k+1)=o0,...,Xn(k+1)=0|X1(K) = 0,...,Xn(K) =0) =1, YO € S,

and hence the agreement states are absorbing states. Véhaowvillnext that, under the
connectivity assumption, the agreement spd@cis reachable from any state, and there-
fore all other states are transient. We are not saying thagatement states are reach-
able from any state, but that from any state at least one agnetestate is reachable. Let
(01,02,...,0n) € A, With 0j € S, j = 1...n be an arbitrary state. We first note that from
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this state only agreement states of the foond;,...,0j) can be reached. Given that
X;j(0) = oj, we show that with positive probability the agreement ve@g oj, ...,0j) can
be reached. At time slot one, with probabilty; agentj keeps its initial choice, while its
neighbors to which it sends information can choog®ith some positive probability, i.e.
Xi(1) = oj with probabilitywij, for all i such thatj € Nij. Due to the connectivity assump-
tion there exits at least onesuch thatj € Nj. At the next time-index all the agents which
have already chosen) keep their opinion with positive probability, while theieighbors
will chooseo; with positive probability. Since the communication netwe assumed
connected, every agent will be able to choogwith positive probability in at mogt—1
steps, therefore an agreement state can be reached witiv@psobability. Hence, from
any initial state ¢1,0,...,0n) ¢ A, all agreement states of the form;(0;,...,0j) with
j=1...nare reachable with positive probability. Since the agresrsiates are absorbing
states, it follows thatdj, 0, ...,0,) ¢ A is a transient state. Therefore, the probability for
the Markov chairZ(k) to be in a transient state converges asymptotically to, zehile

the probability to be in one of the agreement states consexggmptotically to one, i.e.
kIim Pr(Z(k) ¢ A) =0,
or equivalently

lim Pr[U {Xi(K) =X (k)}] =0. (3.55)

i#]

Given an arbitrarg > 0, we define the event

Bk(e) = {a) ; I’pi&le|Xi (k) = Xj (k)| > 6}.
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But since

Bu(e) = |_J{IXi09 - Xj(WI > ¢} <[] {Xi(W) = X; (0},

i#] i#]
from (3.55) it follows that
lim Pr(B(e)) < lim Pr(igj{xi (k) # x,-(k)}] )
and hence the agents asymptotically agree in probabilityesdn addition, due to the ge-

ometric decay toward zero of the probabilRy(Z(k) ¢ A), by the Borel-Cantelli Lemma

the result follows. O

We discussed above about théfelient modes of convergence of the agents to the
same opinion, but we said nothing about where the stateslpctonverge. However,

from Corollary 3.3.1 we know that there exits a random vdeadi € X such that
kIim d(Xi(k), X*) = 0, Vi,

or equivalently
kI|_r)r(]o Pr(Xi(k) # X*) =0, Vi,

which implies that the states of the ageRté) converge taX* in probability. Still, this
tells us nothing about the propertiesXf. In what follows we analyze the evolution of
the probability with which an agemtchooses between the initial values (opinions) of the
other agents in the network. Also, we focus on the convergéndistribution toX* and
more precisely we characterize the distributiorXof

By defining the vectoZ(k) = (X1(k), X2(K),...,Xn(K))’, (3.49) can be compactly
written as

Z(k+1)=0(k)Z(k), Z(0) = Zy, (3.56)
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where P(K)]ij = 16,)=j) and wherd; (k) are independent random processes Witf®) (k) =

1) = wij(K), wij(K) > & and X je a o Wij (K) = 1. Consequently
Z(k) =T'(k)Z(0),

whereI'(k) = O(k—1)8(k-2)---©(1)®(0) is the transition matrix of (3.56). It can be

easily argued that the, ) entry ofI'(k) can be expressed as

[CK]ij = Lgw=j (3.57)

where#; (k) are random processes taking values in the discretd.s&t..,n}. The quan-

tity 1,5,9=j) IS Updated according to the expression

Ligken= = 2 Tato=-nLaw=j = 2, Law=1aw=j (3.58)

n n
=1 =1
where the second inequality followed from the independefhégk) and with1,5 -, =

Lig,(0)=j) for alli, j pairs. Since the events : 6;(K) = I,9_|(k) = j}forl=1...nare mutually
exclusive, 15 .1)=j) IS indeed well defined. The probability mass functione_mk) is

given by

Pr(6i(K) = j) = [W(IQW(k - 1)--- W(L)W(O)];},
where W(K)]ij = wij (k).
It is not difficult to observe that the entries btk) act as selectors between the

different entries of the initial vect@(0), i.e.
n
i) = > L aw=ipXi0).
j=1
Therefore, the probability foXj(k) to chooseX;(0) is given by the probability o?Ti(k) to
choosej, i.e.
Pr(Xi(k) = X;(0)) = Pr(i(K) = J).
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Under Assumptions 3.3.1 and 3.3.2, we can invoke Lemmas 3laid34], and

obtain that there exits a vectewith positive entries summing up to one, such that
kIim W(KW(k-1)---W(1)W(0) =1V,

wherel is the vector of all ones. Therefore, kgjoes to infinity the agents will pick

among the initial valueX;(0) with probabilityvj, i.e.
kIim Pr(Xi(k) = X;(0)) = kIim Pri(k) = j) = vj, (3.59)

whereyv; is the ji" entry of vectow. In particular, if the matrixV(k) is doubly stochastic,

then by Proposition 1 of [34}); = %1 and consequently

1

Jim Pr(Xi(k) = X;(0))= —

(3.60)

This leads us to redefining tleverage consensusncept fromR" to our particular con-
vex metric spaceX, i.e. we can say that the agents reach average consensus if they
asymptotically agree on theffgrent initial opinions with the same probability

Remarkably, from (3.60) it also follows thf(k) converge in distribution to a ran-

dom variableX* given by
n

X* = 1ig=jX{(0)

=1

wherePr(6* = j) = 2. Note thatX* is a point in the convex hull 0fX1(0),...,Xn(0)}

=]

generated by associating equal weights to the initial wki€0). Hence,X* can be
interpreted as theempirical) averagef the initial values.
Introducing the vectop'(K) = (p!(K)), wherepl(k) = Pr(X;(k) = 1) for somel € S,

from (3.49) and from the independence of the random pros@gég, we obtain that the
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evolution ofp' (k) respects the equation

p'(k+1) = W(K)p'(K), p'(0) = py, (3.61)

where W(K)]ij = wij (k). Hence we obtain that there exits a veatavith positive entries

summing up to one, such that
kIim W(KW(k-1)---W(1)W(0) = 1V'.

Therefore, by defining = ?Zlijr(Xj (0) =1), wherev; is the j entry ofv, we have
that

kIim Pr(Xi(k) =1) =mn, Vi,
or equivalently thak;(k) converge is distribution to a random varialXé whose proba-

bility mass function is given b¥r(X* =1) = x;, for all i. If in addition we have thaiV(k)

is doubly stochastic, we have that

. 1
lim Pr(Xi(k) =1) =~ ,Zi Pr(X;(0) =1).

3.6.4 Numerical example

In what follows we consider an example where a group of eighhgs (= 8) have
to choose between two opinions, i®= {1,2}. We assume that the agents communication
network is given by an undirected circular graph as in Figu& assumed fixed for all
time-slots.

We assume that the agents use the scheme described by Go(dl&2) for up-
dating their states, i.e. the dfieientsw;; are constant. In particular we choosg= 7/9
andw;j—1 = Wi i+1 = 1/9 and choose as initial valugg(0) = 1 fori =1...4 andX;(0) = 2
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Figure 3.2: Undirected circular graph with eight nodes

for i = 5...8 with probability one. Figure 3.3 presents an execution of our agreement
algorithm which indeed shows that the agents agree on the same opinion. The different

colors that appear indicates different agents.

22

18

16

1...8

141

Xi(k) i
0

08

06

Figure 3.3: Execution of the agreement algorithm

Next we numerically analyze the evolution of the vector of distances d(k) = (d(Xi(k),X;(k))),
Vi # j. First we see that under our assumption the entries of matrix [W(k)J77= wipwjq,

where 7 and ]Tcorrespond to the pairs of agents (7, /) and (p,q), respectively, and where
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wij define the probability mass function of the random varial|gg as described in

Corollary 3.6.2. We consider the linear system
d(k+ 1) = W(K)d(K), d(0) = d(0).

By (3.20) of Lemma 3.4.1, we have thd(k) is an upper bound ofi(k). Figure 3.4
presents the evolution difi(k)|l.. with time. It is worth mentioning that sinag defined
in (3.43) satisfies the definition of a convex structure wigbaity, it can be easily argued

that (3.20) holds with equality and therefore the upper biai(k) is in factd(k).

0.9
0.8
0.7
0.6
a2y
0.4
0.3
0.2

0.1r

Figure 3.4: Evolution ofid(K)|le with time

We next analyze the distance between the initial points Ba@onsensus point(s).

Sincey respects the definition of a convex structure with equakityhave that

d(Xi(k+1),X(0)) = Z wij d(X; (k). X (0)),
JeN;

which is basically a consensus algorithm. Since the consenatrix is doubly stochastic

we know that

. 1
lim d(Xi(k), % (0)) = - ; d(X;(0),X(0))
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Figure 3.5 presents the evolution of the distance between X;(k) and X;(0) fori=1...n.

Considering our choice for initial values and the fact that » = 8 it is not difficult to see that

05|

d(X;(k), X1(0)), 4
6 =

I
[N
T

0.1

Figure 3.5: The distances between X;(k) and X7(0) fori=1...8

BN 1
- ]ZI d(X;(0),Xi(0)) = 7.

which is also what Figure 3.5 shows.
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Chapter 4
Distributed Asymptotic Agreement Problem under Markovrkandom
Topologies

4.1 Introduction

This chapter deals with the linear consensus problem fapaaof dynamic agents.
We assume that the communication flow between agents is syl a (possibly di-
rected) randomly switching graph. The switching is detersdiby a homogeneous, finite-
state Markov chain, each communication pattern correspgrid a state of the Markov
process. We address both the cases where the dynamics githis & expressed in con-
tinuous and discrete time and, under certain assumptiotiseoconsensus matrices, we
give necessary and fficient conditions to guarantee convergence to average gsuse
in mean square and in almost sure sense. The Markovian swgtatodel goes beyond
the common i.i.d. assumption on the random communicatipoltgy and appears in
cases where Rayleigh fading channels are considered. Qhe gbals of this chapter is
to show how mathematical techniques used in the stabili&yyars of Markovian jump
linear systems, together with results inspired by matrik graph theory, can be used to
prove (intuitively clear) convergence results for the€hn) stochastic consensus problem.

Basic notations and definitionsWe denote byl the vector of all ones. If the

dimension of the vector needs to be emphasized, an indexovidldded for clarity (for
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example, ifl is ann dimensional vector, we will explicitly mark this by usirg, ). Let

x be a vector inR". By ax) we denote the quantitgv(x) = X'1/1’1. The symbols®
ande represent the Kronecker product and sum, respectivelyerGavmatrixA, Null(A)
designates the nullspace of the considered matriX. i some finite dimensional space,
dim(X) gives us the dimension &f. We denote byol(A) a vector containing the columns
of matrix A.

Let M be a set of matrices and I&tbe some matrix. ByM’ we denote the set
of the transpose matrices M, i.e. M’ = {M’ | M € M}. By M® A we understand the
following matrix set M@ A={M®A| M e M}. By writing thatAM = M we understand
thatAM e M, for anyM € M.

Let P be a probability transition matrix corresponding to a hoeragpus, finite
state, Markov chain. We denote 8, the limit set of the sequend@k}kzo, i.e. all
matricesL for which there exists a sequenitgi=o in IN such that lim_., P% = L. Note
that if the matrixP corresponds to an ergodic Markov chain, the cardinalitygf is
one, with the limit pointlz’, wherer is the stationary distribution. If the Markov chain
is periodic with periodm, the cardinality ofP., is m. Let d(M,#,) denote the distance

from M to the setP.,, that is the smallest distance frdvhto any matrix inP..:
(M.P) = inf [IL-M]|
where|| - || is @ matrix norm.

Definition 4.1.1. Let A be a matrix inR™" and let G= (V,E) be a graph of order n.
We say that matrix Aorrespondso graph G or that graph Gorresponds$o matrix A
if an edge g belongs to E if and only if thé, j) entry of A is non-zero. The graph
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corresponding to A will be denoted byG

Definition 4.1.2. Let s be a positive integer and |&t = {A;}isz1 be a set of matrices with
a corresponding set of graplgs= {Gx}>_ ;. We say that the graph &correspondso the

setA if it is given by the union of graphs i&, i.e.

In this note we will use mainly two type of matricgzobability transition matrices
(row sum up to one) andeneratormatrices (row sum up to zero). A generator matrix
whose both rows and columns sum up to zero will be calledbly stochastic generator
matrix.

To simplify the exposition we will sometimes characterizerabability transi-
tion/generator matrix as being irreducible or strongly conreeated by this we understand

that the corresponding Markov chain (directed graph) educible (strongly connected).

Definition 4.1.3. Let Ae R™" be a probability transitiofgenerator matrix. We say that
A is block diagonalizabléf there exists a similarity transformation P, encapsulgtia
number of row permutations, such that PA®a block diagonal matrix with irreducible

blocks on the main diagonal.

For simplicity, the time index for both the continuous andadéte-time cases is
denoted byt.

Chapter organizationIn Section 4.2 we present the setup and formulation of the
problem and we state our main convergence theorem. In 8ettowe derive a number
of results which constitute the core of the proof of our maisuit; proof which is given
in Section 4.4. Section 4.5 contains a discussion of ouregance result.
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4.2 Problem formulation and statement of the convergermdtre

We assume that a groupwagents, labeled 1 throughis organized in a communi-
cation network whose topology is given by a time varying gr&tt) = (V, E(t)), whereV
is the set oh vertices andE(t) is the time varying set of edges. The grdpft) has an un-
derlying random process governing its evolution, given bpaogeneous, continuous or
discrete time Markov chaié(t), taking values in the finite sét, ..., s}, for some positive
integers. In the casé#(t) is a discrete-time Markov chain, its probability transitimatrix
is P = (pij) (rows sum up to one), while i(t) is a continuous time Markov chain, its gen-
erator matrix is denoted by = (4jj) (rows sum up to zero). The random grap(t) takes
values in a finite set of grapt@ = {G;}> , with probability Pr(G(t) = G;) = Pr(a(t) = i),
fori=1...s. We denote by = (q;) the initial distribution off(t).

Letting x(t) denote the state of threagents, in the cagit) is a discrete-time Markov
chain, we model the dynamics of the agents by the followingdr stochastic tfierence
equation

X(t+ 1) = Dy x(t), X(0) = xo, (4.1)

whereDy) is a random matrix taking values in the finite get- {Di}iszl, with probability
distributionPr(Dg(t) = Dj) = Pr(6(t) = i). The matricedD; are stochastic matrices (rows
sum up to one) with positive diagonal entries and corresgorttie graphss;, for i =
1...s

In the cas&(t) is a continuous-time Markov chain, we model the dynamicthef

agents by the following linear stochastic equation

dX(t) = Copx(t)dt, X(0) = Xo, (4.2)
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whereCy(y) is a random matrix taking values in the finite get {Ci}iszl, with probability
distributionPr(Cy() = Cj) = Pr(6(t) =i). The matrice€; are generator like matrices (rows
sum up to zero) and correspond to the graphdori = 1...s. The initial statex(0) = xo,
for both continuous and discrete models, is assumed detistimi We will sometimes
refer to the matrices belonging to the s&tandC asconsensus matricedhe underly-
ing probability space (for both models) is denoted 8y%, P) and the solution process
X(t, Xo, w) (or simply, x(t)) of (4.1) or (4.2) is a random process defined Qn#, P). We
note that the stochastic dynamics (4.1) and (4.2) représarkovian jump linear systems

for discrete and continuous time, respectively. For a caimg@nsive study of the theory of

(discrete-time) Markovian jump linear systems, the re@derrefer to [11] for example.

Assumption 4.2.1.Throughout this chapter we assume that the matrices belgrigithe
setsD andC are doubly stochasti¢rows and columns sum up to one and zero, respec-
tively) and in the case of the s€t havepositive diagonal entriesWe assume also that

the Markov chairg(t) is irreducible

Remark 4.2.1. Consensus matrices that satisfy Assumption 4.2.1 can lstraoted for
instance by using a Laplacian based scheme in the case wiemtmunication graph
is undirected or balanced (for every node, the inner degsesqual to the outer degree)
and possible weighted. Ifi ldenotes the Laplacian of the graph,®e can chooseA=

| —eL; and G = —Lj, wheree > 0 is chosen such thatjAs stochastic.

Definition 4.2.1. We say that ¢t) converges to average consensus

l. in the mean square senséfor any X € R" and initial distribution g= (g, ...,0s)
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of 4(t),

lim E[lIX(t) - av(x0) L[] = 0.

Il. in the almost sure sensi for any » € R" and initial distribution g= (qy, ...,qs) of
o),

Pr(lim JIx(t) - av(xo)1[) = 1.

Assumption 4.2.1 will guarantee reachiagerage consensudesirable in impor-
tant distributed computing applications such as distrézuéstimation [40] or distributed
optimization [34]. Any other scheme can be used as long asdytes matrices with the

properties stated above and it reflects the communicatimeisires among agents.

Problem 4.2.1. Given the random processéxt) and C(t), together with Assumption
4.2.1, we derive necessary angjgient conditions such that the state vect@) xevolv-
ing according to (4.1) or (4.2), converges to average cosasiin the sense of Definition

4.2.1.

In the following we state the convergence result for thedimesonsensus problem

under Markovian random communication topology.

Theorem 4.2.1.The state vector(¥), evolving according to the dynamics (4.1) (or (4.2))
converges to average consensus in the sense of Definitidn #.2nd only if &, (or G¢)

is strongly connected.

The above theorem formulates an intuitively obvious coadifor reaching con-
sensus under the linear scheme (4.1) or (4.2) and under thicoiMan assumption on
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the communication patterns. Namely, it expresses the requbfsistent communication
paths among all agents. We defer for Section IV the proof isfttieorem and provide
here an intuitive and non-rigorous interpretation. SiA@g is irreducible, with proba-
bility one all states are visited infinitely many times. Birice the graplGy (or Ge) is
strongly connected, communication paths between all agestformed infinitely many
times, which allows for consensus to be achieved. Conwergehe graphGy (or Ge)

is not strongly connected, then there exists at least twatagsuch that for any sam-
ple path off(t), no communication path among them (direct or indirectyvesréormed.
Consequently, consensus can not be reached. Our mainkegiun is to prove Theorem
4.2.1 using an approach based on the stability theory of Maak jump linear systems,

in conjunction with a set of results based on matrix and gtapbry.

4.3 Preliminary results

This section starts with a set of general preliminary rasaftter which it continues
with results characteristic to the cases where the dynaafitee agents is expressed
in discrete and continuous time. The proof of Theorem 4.2.hainly based on four
lemmas (Lemmas 4.3.4 and 4.3.5 for discrete-time case amanas 4.3.6 and 4.3.7 for
continuous-time case) which state properties of some ceatthat appear in the dynamic
equations of the first and second moment of the state vechar.pfoof of these lemmas

are based on results introduced in the next subsection.
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4.3.1 General preliminary results

This subsection contains the statement of a number of pgreimp results that are
needed in the proofs of the auxiliary results corresponthrige discrete and continuous
time cases and in the proof of the main theorem.

The next theorem introduces a convergence result for antafinoduct of ergodic

matrices whose proof can be found in [54].

Theorem 4.3.1.([54]) Let s be a positive integer and I@A@}le be a finite set of kn
ergodic matrices. Consider a map iIN — {1,...,s} such that for any finite sequence
{r(i)}ijzl, the matrix producﬂijzlAr(i) is ergodic. Then, there exists a vector ¢ with non-

negative entries (summing up to one), such that:

j
lim [ ] Ay =1¢. (4.3)
i=1

J—o0
In the case where the matrictam}is:1 are doubly stochastic as well, from the above

theorem we can immediately obtain the following corollary.

Corollary 4.3.1. Under the same assumptions asTiheorem 4.3.1if in addition the

matrices in the se{l‘Ai}isz1 are doubly stochastic, then

j

: 1,

lim | |Ar(i) = ﬁ]l]l . (4.4)
i=1

J—00

Proof. By Theorem 4.3.Wve have that

j
lim l_lAr(i) =1c.
]—)oo |:]_
Since the matrices considered are doubly stochastic amdliertheir transposes are er-

godic as well. Hence, by applying agaltneorem 4.3.Jon the transpose versions of
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{Ai}iszl, we obtain that there exist a vectbsuch that
j ’
lim (l—[ Aiy| = 1d'.
J—o00 i=1

But since the stochastic matrixc” must be equal td1’, the result follows. O

Remark 4.3.1. The homogeneous finite state Markov chain correspondingdoudly
stochastic transition matrix P can not have transient satendeed, since P is doubly
stochastic, the same is true fok,For all t > 1. Assuming that there exist a transient state
i, thenlimi_,«(P")ji = 0 for all j, i.e. all entries on column i converge to zero. Buisth
means that there exist sonmigfor WhiCth(Pt*)ji < 1 which contradicts the fact that'P
must be doubly stochastic. An important implication is tlwatcan relabel the vertices of

the Markov chain such that P is block diagonalizable.

Remark 4.3.2. Since the Markov chain corresponding to a doubly stochassinsi-
tion/generator matrix can not have transient states, the Markwirc(seen as a graph)

has a spanning tree if and only if is irreducible (stronglyhcected).

The next lemma gives an upper bound on a finite product of rgative matrices
in terms of the sum of matrices that appear in the product.prbef of this result can be

found in [18].

Lemma 4.3.1.[18] Let m> 2 be a positive integer and I¢&}™, be a set of nonnegative

nx n matrices with positive diagonal elements, then

m m
[ A=y A
i=1 i=1
wherey > 0 depends on the matrices, A= 1,...,m.
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In the following proposition we study the convergence praps of a particular

sequence of matrices.

Proposition 4.3.1. Consider a matrix @& R™" such thaf|Q||1 < 1 and a set of matrices
S ={S1,...Sm}, for some positive integer mn. Assume that there exist a subsequence
{te} © IN such thatS is a limit set of the sequen¢®'},-o and that for any S S, QSe S,

as well. ThensS is a limit set of the sequen({:@k}kzo, i.e.
lim d(Q%.8) =0, (4.5)
where dQ,S) = mingcs||Q— S|l and|| - || is some arbitrary matrix norm.

Proof. Will will prove (4.5) for the particular case of matrix norrmne and the general
result will follow from the equivalence of norms. Pick a sebaencet, }k-o given by

t, =t + ok, wheresy € IN. It follows that

d(Q%,S) = minfQ%Q — QP S|ly < Q% |lz min(IQ% - S|z < d(QY,S).
SeS SeS

Therefore, we get tha is a limit set for the sequentt@:(kzo} and the result follows since

we can maket'k}kzo arbitrary. O
The next lemma states a property of the null spaces of tworgtwamatrices.

Lemma 4.3.2.Let Ac R™" and Be R™" be two block diagonalizable generator matri-
ces. Then

Null(A+ B) = Null(A) n Null(B).

Proof. Obviously,Null(A)NnNull(B) c Null(A+B). In the following we show the opposite
inclusion. SinceA is block diagonalizable, then there exists a similarity&farmation
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T such thatA = TAT is a block diagonal generator matrix (with irreducible sk Let
A € R"™M i =1...mdenote the irreducible blocks on the main diagonahofvherem

is the number of such blocks ajg", n = n. The nullspace oA can be expressed as

a(l]lnl

Null(A) = . JleR,I=1...mp.

amln,
We assumed thaB is block diagonalizable, which means th@g is a union of
isolated, strongly connected subgraphs, property whictanes valid for the graph cor-
responding tB = TBT, sinceGg is just a relabeled version &g. By addingB to A
two phenomena can happen: we can either leave the @gpimchanged or we can cre-
ate new connections among the vertice$5gf In the first caseGg ¢ G4 and therefore
Null(A+ B) = Null(A). In the second case we create new connections among tHesbloc
of A. But since all the subgraphs &fare strongly connected this means thaifoe-
comes connected t4;, then necessarilp\; becomes connected &, henceA; and A,
form an irreducible (strongly connected) new block, whogkspace is spanned by the
vectors of all ones. Assuming that these are the only neweximons that are added to
Gz, the nullspace oA+ B will have a similar expression to the nullspacefofvith the
main diference that the cdiécientse; andej will be equal. Therefore, in this particular

case, the nullspace éf+ B can be expressed as

a’l]]- Ny

Null(A+B) = . |lmeR, ai=aj, I =1...m;.

CYm]lnm
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In general all block#\; which become interconnected after addBwill have equal co-
efficients in the expression of the nullspacefof B, compared to the nullspace &t

Therefore Null(A + B) c Null(A), which means also thalull(A+ B) c Null(A). There-
fore, if (A+ B)v =0, thenAv = 0 which implies also thaBv= 0 orv e Null(B). Hence if

v e Null(A+ B) thenv € Null(A) nNull(B), which concludes the proof. O

In the next corollary we present a property of the eigenspacgesponding to the

eigenvalue one of a set of probability transition matrices.

Corollary 4.3.2. Let s be a positive integer and lét= {A;}>_; be a set of doubly stochas-

tic, probability transition matrices. Then,

NuII(Z(Ai ~1) = ﬂ Null(A - 1),
i=1 i=1
and din(Null(3>_,(Ai —1))) = Lif and only if Gz is strongly connected.

Proof. SinceA;, i = 1...sare doubly stochastic thely — | are block diagonalizable dou-
bly stochastic generator matrices. Therefore, by receisiapplying Lemma 4.3.2-1
times, the first part of the Corollary follows. For the secqadit of the Corollary, note
that, by Corollary 3.5 of [39]% ° 1 A has the algebraic multiplicity equal to one, of its
eigenvaluel = 1 if and only if the graph associatedﬁoziszlAi has a spanning tree, or in
our case is strongly connected, which in turn implies thed(Null(3> (A - 1))) = 1 if

and only ifG 4 is strongly connected. |
The following Corollary is an immediate consequence of Garp 3.5 of [39].

Corollary 4.3.3. A generator matrix G has algebraic multiplicity equal to ofwe its
eigenvaluel = 0 if and only if the graph associated with the matrix has a spagtree.
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Proof. Follows immediately from Corollary 3.5 of [39], by forminge probability tran-
sition matrixP = | + €G, for some appropriate> 0, and noting thalN ull(P—1) = Null(G).

O

The following Corollary is the counterpart of Lemma 3.7 09]3in the case of

generator matrices.

Corollary 4.3.4. Let Ge R™" be a rate transition matrix. If G has an eigenvaliie: 0
with algebraic multiplicity equal to one, thdim_,., €' = 1V, where v is a nonnegative

vector satisfying Gr=0and V1 = 1.

Proof. Choosen; > 0 and let{t{}i-0 be a sequence given by= hsk, for allk > 0. Then

. 1 . .
lim €% = lim €"%® = lim Pk
k—oo 1

k— oo k—co

where we defined,, = €1, From the theory of continuous-time Markov chains we
know thatPy, is a stochastic matrix with positive diagonal entries arad,thiven a vector
xe R", X'Pp, = X' if and only if X G = 0. This means that the algebraic multiplicity of the
eigenvaluel = 1 of Py, is one. By Lemma 3.7 of [39], we have that im. Pﬁl = ]lv;u,
wherew, is a nonnegative vector satisfyimj, vh, = vh, andv, 1 =1. AlsoG’vp, = 0.

Choose anothér, > 0 and letP,, = e”C. Similarly as above, we have that

lim PX =1v/ ,
k—oo '2 2

wherevy, satisfy similar properties ag,. But since both vector belong to the nullspace
of G’ of dimension one, then they must be equal. Indeedisf a left eigenvector oG,

thenvh, andvy, can be written ash, = a1x andvy, = a2X. However, sincd’v,, = 1 and
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1’vh, = 1 it follows thatey = a2. We have shown that for any choicelof 0,

lim 5% = kG = 1v/,

k—oo

wherev is a nonnegative vector satisfyiigjv = 0 and1’v = 1, and therefore, the result

follows. O

4.3.2 Preliminary results for the case where the agentsauhyrs are
expressed in discrete-time

In this subsection we state and prove a set of results usechve gheorem 4.2.1
in the case where the agents’ dynamics are expressed iretdidone. Basically these
results study the convergence properties of a sequencetoestQ )0, whereQ has a
particular structure which comes from the analysis of tret ind second moment of the

state vectox(t).

Lemma 4.3.3.Let s be a positive integer and g }f'j:1 be a set of xn doubly stochas-
tic, ergodic matrices. Let B (pjj) be a sx s stochastic matrix corresponding to an irre-
ducible, homogeneous Markov chain and#gt be the limit set of the sequent@}kzo.

Consider the ng ns dimensional matrix Q whose j)™" block is defined by R= PjiAj.

Then®’, ®(%]1]1’) is the limit set of the matrix sequent@ }i=1, i.e.:

; K o/ 1 21
kll_r)rgod(Q ,Pm®(ﬁ]l]l )) - 0. (4.6)

Proof. The proof of this lemma is based @orollary 4.3.1 The {, j)" block entry of the
matrix QX can be expressed as
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@9i= Do PinPisio- PicaiAis A Al (4.7)

1<iq,...ike1<s

Let p‘j’f be the (,i) entry of an arbitrary matrix iP., i.e. there exist a sequence
{t}k=1 € IN such that lim_,.(P%);ji = P}

We have that

1 ’
< Z (Pjiy - - - Pigqi) 'Aiil”‘Aiklj_ﬁ]]-]]-

lSitl,...ik,1§S

-
“(Qk)ij — Bji ﬁ]l]l

+

o1
+ Z |pjil...pikli—pji|iﬁ]l]1’ <
1<iy,..ik_1<s
1 .,
< max Aiiln-Aikflj_ﬁ]l]l Z Pji; --- Piggit+
11Tkt 1<iy,..ik_1<S
1, ) o 0o
+ ﬁ]l]l Z |p1|1mp|k,1|—pji l,

1<iy,..ik_1<S

where|| - || was used to denote some matrix norm. Consider the limit olettidnand side

of the above inequality for the sequer{tgk-o. By Corollary 4.3.1 we know that

. 1,
k“_r,r(l,A"tl ”'Aitk—lj = r—]]l]l

for all sequenceg,, ..., i, and since obviously,

: ) e
k“—rl]o Z Piit, - - - Pi_,i = Pji»

lSitla-“itk,lSS

it results
lim (Q%)i; = wlyys
k—o0 W= pjl n |

ThereforeP’, ®(%]1]1’) is the limit set for the sequence of matrid€¥}s1. O

113



Lemma 4.3.4.Let s be a positive integer and consider a set of doubly s&iaheatri-
ces with positive diagonal entrie®) = {Di}iszl, such that the corresponding graphGs
strongly connected. Let P be th& s dimensional probability transition matrix of an irre-
ducible, homogeneous Markov chain and#gt be the limit set of the sequent@}kzo.

Consider the ng ns matrix Q whose blocks are given by © p;iD;j. Then?’{x,®(%]l]l')

is the limit set of the sequence of matri¢e&}is1, i.e.:
: K o/ 1 ’
kI|m d(Q", P, ® ﬁ]l]l =0. (4.8)

Proof. Our strategy consists in showing that there exig&talN, such that eachi,(j)™
block matrix of QX becomes a weighted ergodic matrix, i@); j = pﬁPAi(}‘), whereAl.(J!‘)
is ergodic anqaﬁ‘) = (Pk)ji. If this is the case, we can applgmma 4.3.30 obtain (4.8).

The (, j)™ block matrix of QX looks as in (4.7), with the dfierence that in the current case

Aij =Dj:
K) (K
(Qk)ij = Z pjilpiliz--- pik_liDjDil---Dik_l = pﬁl)Al(]) (49)
1<iq,...ike1<s
where
K) a
Ai(j) = Z @iy,..ik.1 DjDiy - Diyy
1<iy,..ik_1<s
with

K K
pjilpilig---pik,li/pgi), pgi)>0
Aiy,..ik1
0, otherwise
Note that each of the matrix produdtD;, ... Dj,_, appearing inAi(Jk), corresponds
to a path from nodg to nodei in k— 1 steps. Therefore, by the irreducibility assumption
of P, there exists & such that each matrix in the sBtappears at least once in one of the

terms of the sum (4.9), i.d1,...,s} C {i1,...ik-1}. Using a similar idea as in Lemma 1 in
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[18] or Lemma 3.9 in [39], by Lemma 4.3.1, we upper bound secint

S
D;Dj,...Dj_, 27 » Dy =ysD, (4.10)
=1

wherey > 0 depends on the matrices # and D is a doubly stochastic matrix with
positive entries

_ 1S

D=2 Z Di.

SinceGy is strongly connected, the same is true®g. ThereforeD corresponds

to an irreducible, aperiodidi has positive diagonal entries) and hence ergodic, Markov
chain. By inequality (4.10), it follows that the matrix puact D;D;, ... D;, , is ergodic.
This is enough to infer thatti(}‘) is ergodic as well, since is a result of a convex combina-
tion of (doubly) stochastic matrices with at least one ergaahatrix in the combination.
Choose &«* large enough such that for all non-zepﬁ*), the matricesﬁ\i(r*) are ergodic
Yi, . Suchk® always exists due to irreducibility assumption Bn Then according to

Lemma 4.3.3, we have that for the subsequétgio, with ty, = mk
lim d{Q™ % ® Li)|=o (4.11)
m—oo 7T ﬁ e )

The result follows by Proposition 4.3.1 sing®||1 < 1 and sinceQ(Pgo@)(%]l]l')) =

PLe(L11).

Lemma 4.3.5.Under the same assumptions as in Lemma 4.3.4, if we defineatinsx m
blocks of Q as @ 2 p;i Dj®Dj, thenp ®(11’) is the limit set of the sequent@i-1,
ie.
; K o/ 1 ’
lim d| Q%P | =11"]],
k— oo n2
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where the vectot above has dimensiortn

Proof. In the current setup (4.9) becomes:

(QYij = Z Pji; Pigiz - - Pi4i(Dj ® Dj)(Di, ®Dyy) ... Dy, , ® Dy, ;). (4.12)

1<iq,...ike1<s

The result follows from the same arguments used in Lemmd 4o8ether with the fact
that the matrix products in (4.12) can be writtenBs% D;)(Di, ®D;,)...(Dj,_, ®Dj, ,) =
(DjDj, ...Dj,_,)®(D;jDj, ...Dj,_,) and with the observation that the Kronecker product of

an ergodic matrix with itself produces an ergodic matrix ai.w O

4.3.3 Preliminary results for the case where the agentsauhycs are

expressed in continuous-time

The following two lemmas emphasize geometric propertiesvof matrices aris-
ing from the linear dynamics of the first and second momenhefstate vector, in the

continuous-time case.

Lemma 4.3.6. Let s be a positive integer and I€t= {Ci}iS:1 be a set of x n doubly
stochastic matrices such thaGs strongly connected. Consider also & s generator
matrix A = (1jj) corresponding to an irreducible Markov chain with statiopaistribu-
tion = (rj). Define the matrices A diag(C/,i = 1...s) and B= A®Il. Then A+ B has
an eigenvalue = 0 with algebraic multiplicity one and with corresponding higand left

eigenvectors given bins and (m1 1y, 7215, . .., wsly), respectively.

Proof. We first note thalA+ B is a generator matrix and that bodlrandB are block diag-
onalizable (indeed has doubly stochastic matrices on its main diagonalBodntains
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n copies of the irreducible Markov chain corresponding\jo Therefore, A+ B has an
eigenvaluel = 0 with algebraic multiplicity at least one.

Let v be a vector in the null space &f+ B. By Lemma 4.3.2, we have thate
Null(A) andv € Null(B). Given the structure oB, v must respect the following pattern
vV ={(UU..U)|ueR". Butsinceve Null(A), we have thaCiu=0,i=1...s, or
Cu=0, \jv:}r::erZC =3.% 1 C/. SinceG¢ was assumed strongly connect€d;orresponds to
an irreducible Markov chain, and it follows thatmust be of the fornu = o1, for some
a € R. By backtracking, we get that= a1, for somea € R and consequenti¥ull(A+
B) = spar(l). Therefore,A = 0 has algebraic multiplicity one, with right eigenvector

given by1. By simple verification we note that{1’,721’,...,7s1") is a left eigenvector

corresponding to the eigenvalde- 0. O

Lemma 4.3.7. Let s be a positive integer and I€t= {Ci}iS:1 be a set of x n doubly
stochastic matrices such thaiGs strongly connected. Consider also & s generator
matrix A = (4jj) corresponding to an irreducible Markov chain with statiopalistribu-
tion = = (7). Define the matrices A diag(C/ ©C/,i =1...s)and B= A®I. Then A+B
has an eigenvalug = 0 with algebraic multiplicity one, with corresponding rigahd left

eigenvectors given by and(m]l;z,zrzll;z, s ,ﬂs]l;]z), respectively.

Proof. It is not difficult to check thatA + B is a generator matrix. Also we note that
CloC =C/®l+1®C/ is block diagonalizable since bo@{ ® | andl ®C/ are block
diagonalizable. Indeed, sin€ is doubly stochastic then it is block diagonalizable. The
matrix C/ ® I containsn isolated copies o€/ and therefore it is block diagonalizable.

Also, | ®C! it has a number afi block on its diagonal, each block being given@y and

117



it follows is block diagonalizable as well.
Let v be a vector in the nullspace &f+ B. By Lemma 4.3.2y € Null(A) andv

Null(B). From the structure d8 we note thav must be of the fornv’ = (U/,...,u’)’ |ue
———

s times
R, Consequently we have tha(@C/)u=0,i=1,...s, or C®C)u=0, whereC =

> ,C!/. Since,Gg is strongly connected? is a generator matrix corresponding to an
irreducible Markov chain. By applying again Lemma 4.3.2tfoee matrixCeC =1®C +
Cw®l, we get thau must have the forna’ = (U',...,U’)’, whereue R" andCu = 0. But
C is irreducible and therefore = a1y, oru= ?y]tlir:ze,sor finally v = a1z, Wherea € R.
ConsequentlyNull(A + B) = spar(1) which means the eigenvalue= 0 has algebraic

multiplicity one. By simple verification, we note thatlalaz,nz]l;‘z,...,ns]l;lz) is a left

eigenvector corresponding to the zero eigenvalue. O

4.4 Proof of the convergence theorem

The proof will focus on showing that the state vect{t) converges in mean square
sense to average consensus. Equivalently, by making timgelad variablez(t) = x(t) —
av(xp)1, we will actually show thatz(t) is mean square stable for the initial condition
Z(0) = xo —av(Xp)1, wherez(t) respects the same dynamic equatiorx@s Using re-
sults for the stability theory of Markovian jump linear sgsts, mean square stability
also imply stability in the almost sure sense (see for inaDorollary 3.46 of [11] for
discrete-time case or Theorem 2.1 of [15] for continuoosetcase, with the remark that
we are interested for the stability property to be satisfardaf specific initial condition,

rather then for any initial condition), which for us implyattx(t) converges almost surely
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to average consensus.
We first prove the discrete-time case after which we contwitie the proof for the

continuous-time case.

4.4.1 Discrete-time case - fhiciency

Proof. Let V(t) denote the second moment of the state vector
V() £ XXM,

where we used to denote the expectation operator. The ma#i(y can be expressed as

V() = ) Vi), (4.13)
i=1
whereV;(t) is given by
Vi(t) £ E[XOX®) xiam=i] i =1...s (4.14)

with ygt=iy being the indicator function of the eveid(t) = i}.
The set of discrete coupled Lyapunov equations governiagtblution of the ma-
tricesV;(t) are given by
s
Vit+1)= > pjiDVi®)D], i=1...5 (4.15)
=1
with initial conditionsV;(0) = qixoxg. By definingn(t) = col(V;(t),i = 1...s), we obtain a

vectorized form of equations (4.15)

n(t+1) = Tqn(t), (4.16)
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wherel'q is ann?sx ns matrix given by

p11D1®D;1 ... psgDs®Ds 01€0l(XoXp)
I'q= : : andng = : ) (4.17)

P1sD1®D1 ... PsPs®Ds 0sCol(XoXp)

We note thal'y satisfies all the assumptionslafmma 4.3.and hence we get
; K o 1 ’
lim d(T§, P, ®(=11"]| =0,
k— o0 n2
where®., is the limit set of the matrix sequen¢@¥}y-o. Using the observation that
L 117col = 1
—11°co (XoXg) = av(x0) 1L,
the limit of the sequencey(tk)}k=0, Where{tk}kso is such that Iim_,oo(Ptk)ij = pl"J" is

-1 P

Jim (te)” = av(x)?

P-1Pja;l’
By collecting the entries of lip, . 77(tk) we obtain

lim Vi(t) = aV(Xo)Z(

S
pja; (11,
j=1

J

and from (4.13) we get

lim V() = av(xg)?11’ (4.18)

sincezis,j:1 p‘j’i"qj = 1. By repeating the previous steps for all subsequencesajere

limit points for {PX}=o we obtain that (4.18) holds for any sequenc@in
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Through a similar process as in the case of the second momestéad of Lemma

4.3.5 we use Lemma 4.3.4), we show that:
lim E[()] = avxo)1. (4.19)
From (4.18) and (4.19) we have that
lim E[Ix(®) ~av(xo) L] = im traceE[(x(1) - a(o)L)(<t) - av(xc)1)’]) =

= tIim trace(E[x(t)x(t)'] — av(xo) L E[X(t)'] — av(x0) E[X(t)] 1" + au(xp)?11’) = 0.
Therefore,x(t) converges to average consensus in the mean square sedSEree-

guently in the almost sure sense, as well. O

4.4.2 Discrete-time case - Necessity

Proof. If G is not strongly connected then by Corollary 4.318n(0>_, Null(A; - 1)) >
1. Consequently, there exist a vectos ﬂiszl Null(Ai — 1)) such thatv ¢ spar(1). If we

choosev as initial condition, for every realization éft), we have that
X(t) =v, forallt >0,

and therefore consensus can not be reached in the senserfibe#.2.1. O

4.4.3 Continuous time - Skiciency

Using the same notations as in the discrete-time case, thentg equations de-

scribing the evolution of the second momenixt) are given by

d > .
Vi =CViO+Vi)C] + ;A“vj t,i=1...s (4.20)
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eguations whose derivation is treated in [16]. By definingkctorn(t) = col(Vi(t),i =

1...9), the vectorized equivalent of equations (4.20) is given by

&) = Ten(). (4.21)
where
CieC; 0 .. 0 da1col(XoXp)
0 CeC -~ O 02c0l(XoX5)
I'e= +A'®| andng =
0 0 o Cs®Cs 0sCOol(XoXp)

By Lemma 4.3.7, the eigenspace corresponding to the zeeowafue ofl ¢ has di-
mension one, with unique (up to the multiplication by a sgd&ft and right eigenvectors
given by1 2 and%(nl]l;lz,nz]l;lz, . --’"s]lﬁ,z), respectively. SincEy is a generator matrix
with an eigenvalue zero of algebraic multiplicity one, byr@Qlary 4.3.4 we have that

lim_, €7 = vI’, wherev' = 3 (m11’,721",...,751"). Therefore, as goes to infinity, we

have that
miy o mIE | qucol(xoxp)
tIim n(t) =
rsll o mslE )| gscol(xox))
By noting that

’

11 ,
—Col(0Xg) = av(x0) Iz,

we farther get

ml2

fim n(t) = av(o)

ﬂ's]an
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Rearranging the columns of lim. n(t), we get
lim Vi) = av(xo)’mi11’,
or
lim V() = av(xg)’11’.

Through a similar process (using this time Lemma 4.3.6), areshow that
tIim E[x(t)] = av(Xp)1.

Therefore x(t) converges to average consensus in the mean square secsaseguently

in the almost surely sense.

4.4.4 Continuous time - Necessity

Follows the same lines as in the discrete-time case.

4.5 Discussion

In the previous sections we proved a convergence resulh&stochastic, linear
consensus problem, for the cases where the dynamics of¢nésagere expressed in both
discrete and continuous time. Our main contributions airdiconsidering a Markovian
process, not necessarily ergodic, as underlying proceshdéorandom communication
graph and of using a Markovian jump system theory inspirgui@gch to prove this result.
In what we have shown, we assumed that the Markov pragssas irreducible and that
the matricedD; andC; were doubly stochastic. We can assume for instanceg{hais
not irreducible (i.e9(k) may have transient states). We treated this case in [28} {on

123



discrete-time dynamics), and we showed that convergertbe isense of Definition 4.2.1
is achieved if and only if the union of graphs correspondmgdch of the irreducible
closed sets of states of the Markov chain produces a strarayipected graph. This
should be intuitively clear since the probability to retduona transient state converges
to zero as time goes to infinity, and therefore the influencthefmatriceD; (or C;),
corresponding to the transient states, is canceled. Welsamssume thdd; andC; are
not necessarily doubly stochastic. We treated this cassn(amly for the discrete-time
dynamics and without being completely rigorous) in [26] amel showed that the state
converges in mean square sense and in almost sure senssee¢osas), and not necessarily
average consensus. From a technical point view, tierdnce lies in the fact that the
n?x n? block matrices ofI',}=o (or {€"¢}i>0) no longer converge tmin—lz]l]l’ but tor;1¢/,

for some vector € R™ with non-negative entries summing up to one; vectamhich in
general can not be a priori determined. In relevant distetbicomputation application
(such as distributed state estimation or distributed apttion) however, convergence
to average consensus is desired, and therefore the aseantpatD; or C; are doubly
stochastic, makes sense.

The proof of Theorem 4.2.1 was based on the analysis of twoixregquences
(€0 and{T'}i=o arising from the dynamic equations of the state’s second emm
for the continuous and discrete time, respectively. Theleeanay have noted that we
approached dierently the analysis of the two sequences. In the case oincmis-time
dynamics, our approach was based on showing that the lefigintceigenspaces induced
by the zero eigenvalue dfc have dimension one, and we provided the left and right
eigenvectors (bases of the respective subspaces). Thergence ofée' <!}~ followed
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from Corollary 4.3.4. In the case of the discrete-time dyitahwe analyzed the sequence
{Ffj}tzo, by looking at how the matrix blocks dﬁtj evolve ag goes to infinity. Although,
similar to the continuous-time case, we could have provegemties ofl 4 related to the
left and right eigenspaces induced by the eigenvalue oiseytuld not have been enough
in the discrete-time case. This is because, thralfphI'q can be periodic, in which case
the sequencel“fj}tzo does not converge (remember that in the discrete-time osnse
problems, the stochastic matrices are assumed to havévpalidgonal entries, to avoid
the possibility of being periodic).

In the case of i.i.d. random graphs [44], or more generalh@dase of strictly
stationary, ergodic random graphs [45] , a necessary dfidisat condition for reaching
consensus almost surely (in the discrete-time casge)(&[Dyy)])| < 1, whered, denotes
the eigenvalue with second largest modulus. In the case dfédviean random topology a
similar condition, does not necessarily hold, neither fmtetimet, nor in the limit. Take,
for instance, two (symmetric) stochastic matri@gsandD, such that each of the graphs
Gp, andGp,, respectively, are not strongly connected but their ungorifithe two state
Markov chaind(t) is periodic, with transitions given b1 = p22 = 0 andpiz = p21 =1,
we note thatlo(E[Dgw)]) = 1, for allt > 0. Also note thatly(lim¢_,. E[Dg)]) does not
exist since the sequen¢E[Dg)]}t=0 does not have a limit. Yet, consensus is reached.
The assumption that allowed for the aforementioned nepgasa stficient condition to
hold, was that(t) is a stationary process (which in turn implies tE&Dy()] is constant
for all t > 0). However, this is not necessarily trugd(t) is a (homogeneous) irreducible
Markov chainunlesshe initial distribution is the stationary distribution.

For the discrete-time case we can formulate a result inmglthe second largest
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>N E[Dg(y]
N

eigenvalue of the time average expectatioDgf), i.e. limn_ e , Which reflects

the proportion of timégt) spends in each state of the Markov chain.

Proposition 4.5.1. Consider the stochastic system (4.1). Then, under Assomi2.1,
the state vector (X) converges to average consensus in the sense of Definitiah 4.2
and only if

<1

2N E[Dg]
| e

Proof. The time average dE[Dg)] can be explicitly written as

 SEGEDap] S ~
l\llinooT = ;mDi =D,

wherern = (r;) is the stationary distribution a@f(t). By Corollary 3.5 in [39],|/12(I5)| <1
if and only if the graph corresponding Bbhas a spanning tree, or in our case, is strongly

connected. But the graph correspondindtds the same a6y, and the result follows

from Theorem 4.2.1. O

Unlike the discrete-time, in the case of continuous timeasigics, we know that if
there exists a stationary distributiar{under the irreducibility assumption), the probabil-
ity distribution of §(t) converges tar, hence the time averaging is not necessary. In the
following we introduce (without proof since basically itggnilar to the proof of Proposi-
tion 4.5.1) a necessary andcient condition for reaching average consensus, involving
the expected value of the second largest eigenval@gf for the continuous-time dy-

namics.

Proposition 4.5.2. Consider the stochastic system (4.2). Then, under Assoméi?.1,
the state vector (X) converges to average consensus in the sense of Definitiah 4.2
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and only if
Re(/lz (tlim E[cg(t)])) <0,

Our analysis provides also estimates on the rate of cormeeg® average con-
sensus in the mean square sense. From linear dynamic etpafithe state’s second
moment we notice that the eigenvalueg'gfandI’. dictates how fast the second moment
converges to average consensus. SIFces a probability transition matrix and sin€g
is a generator matrix, an estimate of the rate of convergehite second moment oft)
to average consensus is given by the second largest eigenfmlmodulus) ofy, for
the discrete-time case, and by the real part of the secogedaeigenvalue df., for the

continuous time case.
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Chapter 5
Distributed Consensus-Based Linear Filtering

5.1 Introduction

In this chapter we address the consensus-based distrilnged filtering problem
as well. We assume that each agent updates its (local) éstimawo steps. In the first
step, an update is produced using a Luenberger observeofyfieer. In the second
step, calledconsensus stepvery sensor computes a convex combination between its lo-
cal update and the updates received from the neighborirgpsenOur focus isot on
designing the consensus weights, but on designingjitee gains For given consensus
weights, we will first give sfiicient conditions for the existence of filter gains such that
the dynamics of the estimation errors (without noise) agemgotically stable. These
suficient conditions are also expressible in terms of the fdagibf a set of linear ma-
trix inequalities. Next, we present a distributed (in thessethat each sensor uses only
information available within its neighborhood), sub-opdil filtering algorithm, valid for
time varying topologies as well, resulting from minimiziag upper bound on a quadratic
cost expressed in terms of the covariances matrices of theag®n errors. In the case
where the matrices defining the stochastic process and tisensus weights are time
invariant, we present #icient conditions such that the aforementioned distribatied
gorithm produces filter gains which converge and ensure titglisy of the dynamics

of the covariances matrices of the estimation errors. Wealgb present a connection
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between the consensus-based linear filter and the lineanirfdt of an appropriately de-
fined Markovian jump linear system. More precisely, we shioat tf the aforementioned
Markovian jump linear system is (mean square) detectalele tine stochastic process is
detectable as well under the consensus-based distriboeat filtering scheme. Finally
we show that the optimal gains of a linear filter for the stateneation of the Markovian
jump linear system can be used to approximate the optimasgdithe consensus-based
distributed linear filtering strategy.

Chapter structure: In Section 5.2 we describe the problems addressed in this cha
ter. Section 5.3 introduces thefBaient conditions for detectability under the consensus-
based linear filtering scheme together with a test expraagedns of the feasibility of a
set of linear matrix inequalities. In Section 5.4 we presestib-optimal distributed con-
sensus based linear filtering scheme with quantifiable pednce. Section 5.5 makes
a connection between the consensus-based distributexd fittering algorithm and the
linear filtering scheme for a Markovian jump linear system.

Notations and Abbreviations: We represent the property of positive (semi-positive)
definiteness of a symmetric matéx by A> 0 (A > 0). By convention, we say that a sym-
metric matrixA is negative definit¢semi-definitgif —A > 0 (-A > 0) and we denote this
by A< 0 (A<0). By A> B we understand thak— B is positive definite. Given a set of
square matrices%}i’\il, by diag(Ai,i = 1...N) we understand the block diagonal matrix
which contains the matrice§’s on the main diagonal. We use the abbreviations CBDLF,
MJLS and LMI for consensus-based linear filter(ing), MaikoMjump linear system and

linear matrix inequality, respectively.
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N

Remark 5.1.1. Given a positive integer N, a set of vect¢rg;_ ,, a set of non-negative

scalars{ pi}i'\i1 summing up to one and a positive definite matrix Q, the foliguiolds

N ’ N N
[Z pm) Q(Z ane) < > pXQx.
i—1 i—1 i—1
Remark 5.1.2.Given a positive integer N, a set of vectoxg!Y |, a set of matricesA }Y |

and a set of non-negative SC&|61'I$}i'\il summing up to one, the following holds
N N ’ N
(Z piAiXi](Z piAiXi] ﬁZpiAiXiXi,Ai,‘ (5.1)
i=1 i=1 i=1

5.2 Problem formulation

We consider a stochastic process modeled by a discretditigsg dynamic equa-
tion

x(k+ 1) = AK)X(K) +W(K), X(0) = %o, (5.2)

wherex(k) € R" is the state vector and(k) € R" is a driving noise, assumed Gaussian
with zero mean and (possibly time varying) covariance maifik). The initial condition

Xp is assumed to be Gaussian with megrand covariance matriXy. The state of the
process is observed by a networkNfsensors indexed by whose sensing models are
given by

yi(K) = Ci(x(K) +vi(K), i = 1...N, (5.3)

wherey;(k) € R" is the observation made by sensandv;(k) € R" is the measurement
noise, assumed Gaussian with zero mean and (possibly timegacovariance matrix
2y (k). We assume that the matricgs, (k)}i’\i 1 andZy(k) are positive definite fok > 0
and that the initial state&y, the noises/; (k) andw(k) are independent for ak > 0. For
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later reference we also defiti¢/*(K), =+ 2(K), whereZ,, (k) £ ¥/2(K)ZH?(k) andEy(K) £
= (OZ ()

The set of sensors form a communication network whose tggatomodeled by a
directed graph that describes the information exchangaethgragents. The goal of the
agents is to (locally) compute estimates of the state of thegss (5.2).

Let Xi(k) denote the state estimate computed by seretdimek and lete; (k) denote
the estimation error, i.e;(k) = x(K) — Xi (k). The covariance matrix of the estimation error
of sensot is denoted by (K) = E[€j(K)ei(k)'], with Z;(0) = Zo.

The sensors update their estimates in two steps. In the tigst an intermediate

estimate, denoted hy;(k), is produced using a Luenberger observer filter
@i(K) = A(K)%i(K) + Li(k)(yi (k) - Ci(K)%i(K)), i = 1...N, (5.4)

whereL;(K) is thefilter gain.
In the second step, the new state estimate of sensogenerated by a convex
combination betweegp;(k) and all other intermediate estimates within its commutoca

neighborhood, i.e.

N
fq(k+1):Zpi,~(k)<p,-(k),i:1...N, (5.5)
=1

wherep;j (k) are non-negative scalars summing up to oﬁé\gl pij (K) = 1), andpjj(k) =0
if no link from j to i exists at timek. Having pjj(k) dependent on time accounts for a
possibly time varying communication topology.

Combining (5.4) and (5.5) we obtain the dynamic equationgi®consensus based
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distributed filter:

N
Ri(k+1) = Z pij () [AK)X) (K) + L () (¥i(K) = Cj (%K) T = 1...N. (5.6)

=1

From (5.6) the estimation errors evolve according to

N
ak+1)= D P (AR - Li(KICi ()€ +wk - Li(v®]. i =1..N.  (5.7)

i=1

We define the aggregate vectors of estimates, measurermstintsation errors, driv-

ing noise and measurements noise, respectively

X(K) = (Ra(K)'s.... & (K)),
Yy’ = (ya(K)',.... yn(K)),
€l = (ea(K)',....en(K)),
w(k) = (W(k)', ..., w(K)"),
V() = (vi(K)',..., v (K)),
and the following block matrices
A(K) Onxn =+ Onxn
age| O AR e O v
Onxn Onn -+ AK)
Ci(k) Orpxn -+ Oryxn L1(K)  Onr,
e Orsn Co(K) -+ Opyxn R O, L2(K)
Orpxn Orpsn -+ Cn(K) Onxr; - Onxr,
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wherer = Zi'\ilri. The dynamics (5.6) and (5.7) can be compactly written as
X(k+ 1) = P(K)AK)X(K) + P(K)LK)[y(K) — C(K)X(K)], (5.8)

e(k+1) = P(K[A(K) — LKC(K)]e(k) +w(k) — P(K)L(K)V((K), (5.9)

whereP(k) = P(K)®| andP(k) = (pij(k)) is a stochastic matrix, with rows summing up to

one.

Definition 5.2.1. (distributed detectability) Assuming tha(lky, C(k) = {Ci(k)}i’\i1 and
p(k) = {pij(k)}i’j‘j:1 are time invariant, we say that the linear system (5.2) iedktble
using the CBDLF scheme (5.6), if there exist a set of matrli:;es{Li}i’i1 such that the

system (5.7), without the noise inputs, is asymptoticélyls.

We introduce the following finite horizon quadratic filtegioost function

K
EOESY

k=0 i

N
Elllei (K111, (5.10)
=1

where byL () we understand the set of matrice§) = {Li(k),k =0...K — 1}{11. The

optimal filtering gains represent the solution of the foliogvoptimization problem
L*(-) = arg mi)nJK(L(.)). (5.11)
Assuming tha®A(k), C(k) = {C; (k)}i’\il, Zw(k), Zu(K) = {Zy; (K)} andp(k) = {pij (k)}i’f'j:1 are
time invariant, we can also define the infinite horizon fikhgrcost function
1 N
T = — i 2
‘MUQﬂ«Mugm;HWWL (5.12)

wherelL = {Li}i’\i1 is the set of steady state filtering gains. By solving therojation
problem

L*=arg ncinJ“’(L), (5.13)

133



we obtain the optimal steady-state filter gains.

In the next sections we will address the following problems:

Problem 5.2.1. (Detectability conditions) Under the above setup, we walriitntd condi-

tions under which the system (5.2) is detectable in the sefiidefinition 5.2.1.

Problem 5.2.2. (Sub-optimal scheme for consensus based distributedritferdeally,

we would like to obtain the optimal filter gains by solving tatimization problems
(5.11) and (5.13), respectively. Due to the complexity es¢hproblems, we will not
provide the optimal filtering gains but rather focus on poivg a sub-optimal scheme

with quantifiable performance.

Problem 5.2.3. (Connection with the linear filtering of a Markovian jumpéiar system)
We make a parallel between the consensus-based distribogd filtering scheme and

the linear filtering of a particular Markovian jump linear siem.

5.3 Distributed detectability

We start with a toy example motivating our interest in therthsted detectability
problem under the CBDLF scheme. Let us assume that no siaglé¥C;) is detectable
in the classical sense, but the pak €) is detectable, wher€’ = (C,...,Cy)). In this
case, we can design a stable (centralized) Luenbergervaoddter. The question is,
can we obtain a stable consensus-based distributed filtetheAfollowing example will
show, in general this is not true. That is why it is importanfihd conditions under which

the CBDLF can produce stable estimates.
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Example 5.3.1.(Centralized detectable but not distributed detectablensider a linear

dynamics as in (5.2-5.3), with two sensors, where

A= ,Ci=(1 0)andG=(0 1)
0 10

Obviously, the pairgA,C1) and (A, Cy) are not detectable while the paiA,C) is,
where C = (C; C)) is. Let L = (I1 I2) and L, = (I3 14). For this example, the matrix that
dictates the stability property of (5.9) is given by
p11(10-11) 0  10p2  —prals

—p1ual2 10p11 0 p12(10-14)

P21(10-13) O 10p2  —pe2ls

—p2al2 10p21 0 p22(10-14)
For p11 = 0.9, p12=0.1, p21 = 0.7 and p2 = 0.3, the characteristic polynomial of the

above matrix is given by
q(s) = ' +q3(11.13)S> + Go(11, 14 1213)S* + Q1 (11, 14) + Go(11. 1),

where
az(l1,13) = —24+0.911 + 0.3,
02(11,14,1213) = =0.071213 - 5.614 + 184—12.811 + 0.2711l4,
q1(l1,14) = 301, —480—- 241114+ 42,
Jo(l1,14) = —40l1 — 404 + 41114+ 400

Let2j(l1,14,1213) denote the eigenvalues@t We defin@max(l1,14,1213) = max |1i(11,14,1213)].
The system (5.2-5.3) is not detectable in the sense of D@fiBi2.1 if Anax(l1,14,1213) > 1
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for all values of I1, I and of the product l13. We introduce also the quantity A% (13) =

miny, 1, Amax (11,14, 213).

o £ (12!3)

1 1 1 1 1 1 1 1 1
-500 400 -300 200 -100 0 100 200 300 400 500
lalg

Figure 5.1: The evolution of 123 _(l273)

From Figure 5.1, we note that mingj3 /lf,?ax(lzk) = 4.498, which shows that, for the
given consensus weights, and matrices A, C1 and C3, there are no values for 11, I, I3 and

1y, such that (5.9) can be made asymptotically stable.

The CBDLF (5.8) uses only one consensus step and we have seen, through Example
5.3.1, that in general this does not guarantee stable estimates, even in the case where the
pair (4,C) 1s detectable. However, as the next proposition suggests, stable estimates
might be achieved if a large enough number of consensus steps is used, 1.e. we set P(k) =

P(k)"®1, for some positive integer value 7, large enough.

Proposition 5.3.1. Consider the linear dynamics (5.2)-(5.3). Assume that in the CBDLF
scheme (5.6), we have p;; = % and that x;(0) = xo, for all i, j=1...N. If the pair (4,C) is

detectable, then the system (5.2) is detectable as well, in the sense of Definition 5.2.1.
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Proof. Rewrite the matrixC as
C= EN] Ci.
i=1
where(?i’ = (Onxry - --Onxri_y € Onxriyy -+ - Onxry)- IgNnoring the noise, we define the mea-
surements

Yi(K) = Cix(K),

which are equivalent to the ones in (5.3). Under the assumphiatp;; = % andX = Xo

foralli,j=1...N, it follows that the estimation errors respect the dynamics

N
e(k+1)= %Z(A— LiCi)e(K). (5.14)
i=1

SettingLj = NL fori =1...N, it follows that
e(k+1) = (A-LC)e(k).

Since the pairA, C) is detectable, there exists a matkixsuch thatA— LC has all eigen-
values within the unit circle and therefore the dynamic&4bis asymptotically stable,

which implies that (5.2) is detectable in the sense of Dédini5.2.1. O

The previous proposition tells us that if we achieve (aveyagpnsensus between
the state estimates at each time instant, and if the pa@)(is detectable (in the classical
sense), then the system (5.2) is detectable in the sensefwitida 5.2.1. However,
achieving consensus at each time instant can be time andrizaityecostly and that is
why it is important to find (testable) conditions under whibke CBDLF produces stable

estimates.

Lemma 5.3.1. (syficient conditions for distributed detectability) If thergigts a set of
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symmetric, positive definite matricgg; }i’il and a set of matricefd,; }i’il such that
N
Q= Z pji(A— LjCj)'Qj(A— LjCj)+Si, i=1...N, (5.15)
=1
for some positive definite matric{ési}i’i 1» then the system (5.2) is detectable in the sense

of Definition 5.2.1.

Proof. The dynamics of the estimation error without noise is given b

N
e.(k+1):Zpij(A—LjCj)ej(k),i:l...N. (5.16)
=1

In order to prove the stated result we have to show that (Ssl&symptotically

stable. We define the Lyapunov function
N
VR = > %K) Qx(K),
i
and our goal is to show th&t(k+ 1) - V(k) < 0 for allk > 0. The Lyapunov dference is
given by

N (N ! N
V(k+1)—V(k):Z[Z p.j(A—ch,-)ej(k)) Q (Z pi,-(A—L,-cj)e,-(k)]—ei(k)'Tqfi(k)s
j=1

i=1\j=1

N N
Z[Zp.,-e,-(k)'(A—L,-cj)'Qi(A—ch,-)ej(k)]—ei(k)'Qiei(k), (5.17)

i=1\j=1

where the inequality followed from Remark 5.1.1. By chaggine summation order we

can further write

N
V(k+1)-V(k) < Za(k) [Z pii(A—-L;Cj)'Qj(A-L;Cj) - Qi)fi(k)-

Using (5.15) yields

2

V(k+1)-V(K) < — Z & (K)'Sie(K)
i=1
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From the fact thatS j}g.\'zl are positive definite matrices, we get
V(k+1)-V(k) <0,
which implies that (5.16) is asymptotically stable. m|
The following result relates the existence of the sets ofin&H{Qi}i’il and{Li}i’i1
such that (5.15) is satisfied, with the feasibility of a sdtredar matrix inequalities (LMI).

Proposition 5.3.2. (distributed detectability test) The linear system (52)etectable in
the sense of Definition 5.2.1 if the following linear matriequalities, in the variables

(X}, and{Y;}!, are feasible

X VPE(A'X1=CyY])  Pa(AXa=CoYp) - y/Pri(AXn—CRY{)
VPE(X1A - YiC1) Xq 0 . 0
VP (XA-Y2C2) 0 X, 0 >0,
VPNi(XNA - YNCN) 0 0 Xu
(5.18)

fori=1...N and Where{Xi}i'\il are symmetric. Moreover, a stable CBDLF is obtained

by choosing the filter gains as & Xi‘lYi fori=1...N.

Proof. First we note that, by the Schur complements Lemma, therlimadrix inequali-
ties (5.18) are feasible if and only if there exist a set a sytnia matrices{Xi}i’i1 and a

set of matricesY;} ,, such that

N
Xi— > (XiA=YCiY X;H(XjA-Y{C))> 0, X >0

j=1
foralli=1...N. We further have that,

N
Xi— > (A= XTHYCi) X (XjA-X1YC)) > 0, X > 0
i=1
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By definingL; = X1Y;, it follows that
N
Xi— > (A-LiCj) Xj(A-LjC}) > 0, X >O.
=1
Therefore, if the matrix inequalities (5.18) are feasilhere exists a set of positive defi-

nite matrices{xi}i’i , and a set of positive matric«{eSi}i’\i 1» such that

N
Xi = > (A-LiCj)'X{(A-L|C})+Si.

=1
By Lemma5.3.1, it follows that the linear dynamics (5.7)theut noise, is asymptotically

stable, and therefore the system (5.2 is detectable in tisesd Definition 5.2.1. O

5.4 Sub-Optimal Consensus-Based Distributed linearrkilye

Obtaining the closed form solution of the optimization gewb (5.11) is a challeng-
ing problem, which is in the same spirit as the decentral@adnal control problem. In
this section we provide a sub-optimal algorithm for compgtihe filter gains of the CB-
DLF, with quantifiable performance in the sense that we cdmptset of filtering gains

which guarantee a certain level of performance with resiectjuadratic cost (5.10).

5.4.1 Finite Horizon Sub-Optimal Consensus-Based Digtieith Linear
Filtering

The sub-optimal scheme for computing the CBDLF gains regudim minimizing
an upper bound of the quadratic filtering cost (5.10). Théwahg proposition gives

upper-bounds for the covariance matrices of the estimatimnrs.
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Proposition 5.4.1. Consider the following coupledfirence equations
N
Qik+1)=>" pij (K[ (AK) - L (WCj(K) Qj(K) (AK) - L (KICj(K) +
i=1

+Lj(KZy; (KL (k)] +Zw(K), (5.19)

with @ (0) = %;(0), for i =1...N. The following inequality holds
Zi(K) < Qi(K), (5.20)
fori=1...N and for all k> 0.
Proof. Using (5.7), the matriZi(k+ 1) can be explicitly written as
Yi(k+1)=E[g(k+1)g(k+1)] =

N N ’
=E [Z pij (K) (A(k) - Lj(k)Cj(k)) €j(K) +w(k) — Z Pij (KL (K)v;j (k)]

N
(Z pij () (AR — L (K)C; () € (K) + W(k) — Z i (KL (K, (k)}

=1

Using the fact that the noisegk) andv;(k) have zero mean, and they are independent
with respect to themselves and the initial state, for evangtinstant, we can further

write

Si(k+1)=E

N (N
(Z pij () (AK) - Li(KIC;(K)) ¢ (k)] (Z pii () (AK) - L (KIC;(K)) ¢ (k)]

=1

+ (k).

N "( N
E [Z pij (L (K)V; (k)] (Z pij (L (K)V; (k)]
ji=1 ji=1

By Remark 51.2, it follows that

<

N (N
E [Z pij () (A(K) - L (KICj(K) ) €; (k)] [Z pij () (A(K) — Li(KICj(K) ) €j (k)]
ji=1 ji=1
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N
< > pii () (AK) = Li(KIC;(K) 2 (K (AK) - Lj(KIC;(K))
j=1

and

N "( N
[Z pij (L (K)V; (k)] (Z pij (L (K, (k)]
ji=1 ji=1

From the previous two expressions, we obtain that

E

N
<3 B (KL (RS, (LK), = 1...N.
=1

N
Si(k+1) < Z pij (K) (AK) - L (K)C; (K) =;(K) (AK) - L; (KICj(K)) +
=1

N
+ Z Pij (KL (K)Zy; ()L j (k) + Zw(K)

=1
We prove (5.20) by induction. Assume thiagk) < Q;(k) for alli=1...N. Then

(AK) - Li (K)Ci (k) Zi (K) (A(K) - Li (K)Ci(K))" < (AK) - Li(KICi (K)) Qi (K) (AK) - Li (K)Ci(K))",

and

Li(KZi(kLi(k)" < LiQi(KILi(K)', i=1...N.

and therefore

Si(k+1) < Q(k+1), i=1...N.

m
Defining the finite horizon quadratic cost function
(L) = 2y TR tr(QiK), (5.21)
the next Corollary follows immediately.
Corollary 5.4.1. The following inequalities hold
ILE) < X L0, (5.22)
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and

. 1 . 1
limsup=J¥(L) < limsup=JX(L) (5.23)
K—oo K K—oo K
Proof. Follows immediately from Proposition 5.4.1. |

In the previous Corollary we obtained an upper bound on ttegifilg cost function.
Our sub-optimal consensus based distributed filteringraehill result from minimizing

this upper bound in terms of the filtering gai{ms(k)}i’il:

mindi (L (). (5.24)

Proposition 5.4.2. The optimal solution for the optimization problem (5.24) is
’ * ’ -1
Li(K) = ARQ (Ci(K) [Zy () + Ci(WQ; (T (KY | (5.25)
and the optimal value is given by

K
HOEDY

N
k=1i=1

tr(Q7 (K),

where G (k) is computed using

Q(k+1)= 2L, pi () |AKRIQ; (AR +Zuw(k) — AK)Q; ()C; (K-

(240 +CRQKCIK)) CiRIQKAKY |.

(5.26)

with Q*(0) = Zj(0) and fori=1...N.

Proof. Let J_K(L(-)) be the cost function when an arbitrary set of filtering gdirg-) =
{Li(K,k=0...K-1N_isusedin (5.19). We will show thdf, (L*()) < Jk(L(-)), whichin
turn will show thatL *(-) = {Lj(k)*,k=0... K- 1}{11 is the optimal solution of the optimiza-

tion problem (5.24). LetQr(k)}Y; and{Qi(k)}\ , be the matrices obtained wher\(-) and
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L (-), respectively are substituted in (5.19). In what folloneswill show by induction that
Qi(k) < Qi(k) for k> 0 andi = 1...N, which basically proves thal_;*((L*(-)) < J_K(L(-)),
for anyL(-). For simplifying the proof, we will omit in what follows theme index for
some matrices and for the consensus weights.

Substituting(L; (k),k > O}i'\i1 in (5.19), after some matrix manipulations we get

N

Qrk+1)= )" pij [AQ (A +Zw— AQ; (KIC)(Zy,+
j=1

+CiQ;(KC)'CiQ;(WA|. Qr(0)=%i(0). i =1...N.

We can derive the following matrix identity (for simplicitye will give up the time

index):
(A+LC)Qi(A +LiC) + Ly, Li' = (A+ L?Ci)Qi (A + Li*Ci)/ + Likzvi Li*/+

+(Li = L)y +CIQIC)(Li - L)). (5.27)

Assume thaQQ;' (k) < Qi(k) for i = 1...N. Using identity (5.27), the dynamics of

Qi(K)* becomes
N
Qi*(k+ 1)= Z Pij ((A+ Lj(k)Cj)Qj(k)(A+ Lj(k)Cj)' + L,—(k)z\,j Lj(k)'—
=1

~(Lj(9 - L1 (K)(Ey; + CQj(CHLj(K) — L (K) +Zw).

The diferenceQ; (k+ 1) - Qi(k+ 1) can be written as
N

Qik+1) = Qi(k+1) = > pij ((A+L;(C)(Q;(K) - Qj(K)(A+Lj(KICj)'
j=1

(L ()~ L3 (), +CiQiICL; (K — L () ).
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Sincezy, +CiQ;(K)C/ is positive definite for alk> 0 andi = 1...N, and since we assumed

thatQ;'(k) < Qi(K), it follows thatQf (k+ 1) < Qj(k+1). Hence we obtain that
Je (L () < Ik (L)
for any set of filtering gaink (-) = {Lj(k),k=0... K- 1}{11, which concludes the proof.o

We summarize in the following algorithm the sub-optimal CBBcheme resulting

from Proposition 5.4.2.

Algorithm 1: Consensus Based Distributed Linear Filtering Algorithm
Input: uo, Po

Initialization: %;(0) = o, Yi(0) = Xo

while new data existdo
Compute the filter gains:

Li « AY,C/(Zy, +CiYiC)t
Update the state estimates:
@i — A% +Li(yi —C~-i%)
X — Z Pij¢j
j
Update the matrices;¥Y

N
Vi« > pi (A= LiCiYj(A-LiCj) +LjZyL}) + Zw
=

end
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5.4.2 Infinite Horizon Consensus Based Distributed Filigri

We now assume that the matricag), {Ci(K)}Y;, {Zy (K}, andZy(k) and the

weights{ pj; (k)iszl} are time invariant. We are interested in finding out undertwbadi-
tions Algorithm 1 converges and if the filtering gains proglstable estimates. From the

previous section we note that the optimal infinite horizost@an be written as
_ N
3o = Jim 3 otr(Q ().
i=1
where the dynamics d@;(k)* is given by

N
Qk+1)= > pi [AQ*;(k)A' +Zy—AQ (KT} (£, +CjQIC]) ' C; Q’Jf‘(k)A’] . (5.28)
=1

and the optimal filtering gains are given by
’ * ’ -1
Li(k) = AQ (KIC/ [z +CiQ (T |

fori=1...N. Assuming that (5.28), converges, the optimal value of tkmf; is given
by
—_— N J—
=) Q)
i=1
where{Q}N, satisfy
J— N J— Ja— J— J—
Qi =) pij[AQiA +Zw—AQ|Cj(Zy, + CiQiC)'Ci QA (5.29)
j=1
Suficient conditions under which there exists a unique soluti(®.29) are provided by
Proposition A.2.1, which says that i,L,A) is detectable andX Zé/z,p) is stabilizable
in the sense of Definitions A.1.1 and A.1.2, respectivelgntthere is a unique solution

of (5.29) and liM-. Q"(K) = Q.
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Mimicking Theorem A.12 of [11], it can be shown that a numafiapproach to
solve (5.29) (if it has a solution) can be obtained by (nuoaly) solving the following

convex programming optimization problem

max tr(ZN, Qi) (5.30)
~Qi+ XN PAQA +3y  VPRICIQIA ... VPIICNQNA
VPTAQIC] Ty +C1QIC, ... 0 ;
>
VpiNAQNCf\] 0 ZVN+CNQNC|/\1
Q>0 i=1...N.

5.5 Connection with Markovian Jump Linear System stateregton

In this section we present a connection between the detkistald (5.2) in the
sense of Definition 5.2.1 and the detectability property ®H.S, which is defined in
what follows. We also show that the optimal gains of a lindgetfior the state estimation
of the aforementioned MJLS can be used to approximate thicolof the optimization
problem (5.11), which gives the optimal CBDLF. We assumettiamatrixP(k) describ-
ing the communication topology of the sensorgiieducible anddoubly stochastiand
we assume, without loss of generality, that the matri€&), k > O}i’i1 in the sensing

model (5.3), have the same dimensions. We define the foltpMarkovian jump linear
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system
£(k+1) = Agg (KIE(K) + By (K)W(K)

2(K) = Copio (K)E(K) + Dy (K)¥(K), £(0) = &,
whereé(K) is the statez(K) is the outputp(k) € {1,...,N} is a Markov chain with prob-

(5.31)

ability transition matrixP(k)’, w(k) andv{k) are independent Gaussian random variables
with zero mean and identity covariance matrices. Afgas a Gaussian noise with mean
1o and covariance matriXyo. We denote byri(k) the probability distribution oB(k)
(Pr(6(k) = i) = i(K)) and we assume thaf(0) > 0. We have thaflyy(K) € (AR},
Bogg (K) € (Bi(KIN 1, Coo(K) € {Ci(IN; andDgqo (K) € {Di(k)}N,, where the indekrefers

to the state of 6(k). We set

R0=AK,  Bilg=ZDxiW, 5.32)
CiK = 25CiKM. Bi) = 22y (K.

for all i,k > O (note that sincd’(k) is assumed doubly stochastic and irreducible and
7i(0) > 0, we have thairij(k) > O for all i,k > 0). In addition,&g, 6(k), W(k) and v(k)
are assumed independent for kit 0. The random procesik) is also calledmode
Assuming that the mode is directly observed, a linear fileerthe state estimation is
given by

E(k+1) = Agg (KIE(K) + Mg (K) (2(K) — Ca (& (K)), (5.33)

where we assume that the filter gaity) depends only on the current mode. The dy-
namics of the estimation errefk) = £(k) —é(k) is given by

e(k+1) = (Ag(K) — Mago () Cag (K)) e(k)+

+Bag (KIW(K) — Mg (K) Doy (K)V(K).

(5.34)
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Let u(k) andY(k) denote the mean and the covariance matrie(&j, i.e. u(k) =
E[e(k)] andY(K) = E[e(k)e(k)’], respectively. We define also the mean and the covariance
matrix of e(k), when the system is in modei.e. uj(k) = E[e(k)1g09=i)] and Yi(k) =
E[e(k)e(k) Ligw=i}], wherelyk-i) is the indicator function. It follows immediately that

(k) = S pi(k) andY(K) = S Yi(K).

Definition 5.5.1. The optimal linear filter (5.33) is obtain by minimizing th@léwing

guadratic finite horizon cost function

N
tr(Yi(k)), (5.35)
=1

K K
JcM() = tr(Y() = >
k=1 k=11
whereM(-) = {M;(k),k=0...K - 1}i'\il are the filter gains and wheid; (k) corre-

sponds tdMyk) (k) whend(k) is in modei. We can give a similar definition for an optimal

steady state filter using the infinite horizon quadratic émsttion.

Definition 5.5.2. Assume that the matricdg(k), Ci(k) and Rk) are constant for all k> 0.
We say that the Markovian jump linear system (5.31) is meaarsqdetectable if there
exits{Mi}i’i1 such thatlimy_,« E[]le(K)|I?] = 0, when the noisedi(k) and (k) are set to

Zero.

The next result makes the connection between the detattathithe MILS defined

above and the distributed detectability of the proces9.(5.2

Proposition 5.5.1.1f the Markovian jump linear system (5.31) is mean squareatable,

then the linear stochastic system (5.2)-(5.3) is deteetabthe sense of Definition 5.2.1.

Proof. In the context of this proposition, the dynamics of the eation error for the
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MJLS (5.31) becomes

e(k+1) = (A— Mgy Cor)e(k), &0) = e,

whereC; = G;. It is not difficult to check that the dynamic equations for the covariance

matrices{Yi(k)}i'\i 1 and the mean vectofg; (k)}i'\i , are given by

N
1
Yi(k+1):jz:;pij(A—Mj mcj)vj(k)(A—Mj m Ci). (5.36)
with Y;(0) = Y? and
pi(k+1) = Z pij (A= Mj—==C)j(K),i(0) = s, (5.37)

. v—.( )

fori=1...N. Since the MJLS is assumed mean square detectable it follatishere
exists a set of matrice{st\/li}i’\i1 such that (5.36) is asymptotically stable. But this also
implies (see for instance Proposition 3.6 of [11]) that §.8 asymptotically stable as
well. SettingL; = 7j(0)M;, we see that (5.37) is identical to equation (5.7) and tloeeef
(5.7) is asymptotically stable (when ignoring the noisegnkk, (5.2) is detectable in the

sense of Definition 5.2.1. O

The next result establishes that the optimal gains of thex {{.33) can be used to

approximate the solution of the optimzation problem (5.11)

Proposition 5.5.2. Let M*(-) = {M{(k),k = 0,...,K - 1}!11 be the optimal gains of the

linear filter (5.33). If we set (k) = M (k) as filtering gains in the CBDLF scheme,

S
Vi (0)
then the filter cost function (5.10) is guaranteed to be ufgmemded by

K
Ie(L() < ZZ (O)tr(Y*(k)) (5.38)
k=0 i=1 T

where Y (k) are the covariance matrices resulting from minimizing .3
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Proof. By Theorem 5.5 of [11], the filtering gains that minimize () &re given by
* N * o ’ N N ’ o * o ’ -1
M () = AR)Y; (G (K [mi (KD D (k) +Ci(Y; (WEi (kY| (5.39)
fori=1...N, whereY; (k) satisfies

Yi(k+1)= 2N pi (R [AiR)Y; (A (K + 7 (KB (K)B; (K)'~ 5.40)
~Ai(lY; (IC (0 (i (B (RB; (kY +Ci(kY; (I kY)Y RAKY |-

In what follows we will show by induction that* (k) = 7;(0)Q: (k) for all i,k > 0, where

Q' (k) satisfies (5.26). Fdk =0 we haveY:*(0) = ;(0)Y*(0) = 7i(0)Zo = 7i(0)Q(0). Let

us assume thaf* (k) = ;(0)Q: (k). Then, from (5.32) we have

(0B (KB;j(K)’ = 7i(0)=w(K), 7j(KD;j(KD;(K) = Zy (K),

L N N (5.41)
mi(K)Dj(K)D;(K)" +Cj(K) Y] (KICj(K) = Zy; (k) + C; (K Qj (K)Cj(K)".

Also,

M (K) = 7 (OAKIQ (KICH (K [£4,(9) + Cj QS (0] (5.42)

and from (5.25) we get thal* (k) = vzi(O)L{ (k). From (5.40) and (5.41) it can be easily

argued that;"(k+ 1) = 7;(0)Q; (k+ 1). By Corollary 5.4.1 we have that

I(L () < I(L ),

for any set of filtering gaink () and in particular foi;(k) = (0) M (k) = L(Kk), for all i

andk. But since
N

K
ORI AAC)

k=0 i=1

the result follows.
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Chapter 6

Conclusions

In Chapter 2 we studied a multi-agent subgradient methodmuacidom communi-
cation topology. Under an i.i.d. assumption on the randooegss governing the evolu-
tion of the topology, we derived upper bounds on two perferoeametrics related to the
CBMASM. The first metric reflects how close each agent canapiigt optimal value. The
second metric reflects how close and fast the agents’ esttnoéithe decision vector can
get to the minimizer of the objective function, and it waslgmed for a particular class of
convex functions. All the aforementioned performance messwere expressed in terms
of the probability distribution of the random communicatitopology. In addition we
showed how the distributed optimization algorithm can bedu® perform collaborative
system identification, application which can be useful ihatmrative tracking

In Chapter 3 we emphasized the importance of the convexitgeqat and in par-
ticular the importance of the convex hull notion for reachconsensus. We did this
by generalizing the asymptotic consensus problem to the absonvex metric spaces.
For a group of agents taking values in a convex metric spaeeintvoduced an itera-
tive algorithm which ensures asymptotic convergence teeagent under some minimal
assumptions for the communication graph. As an applicati@nprovided an iterative
algorithm which guarantees convergence to consensus bopi

In Chapter 4 we analyzed the convergence properties ofrieariconsensus prob-
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lem, when the communication topology is modeled as a dide@edom graph with an
underlying Markovian process. We addressed both the casesevthe dynamics of the
agents are expressed in continuous and discrete time. dode assumptions on the
communication topologies, we provided a rigorous mathemalaproof for the intuitive
necessary and fiicient conditions for reaching average consensus in the regaare
and almost sure sense. These conditions are expressedm déconnectivity proper-
ties of the union of graphs corresponding to the states olMtéwkov process. The aim
of this work has been to show how mathematical techniques the stability theory of
the Markovian jump systems, in conjunction with resultsrirthe matrix and graph the-
ory can be used to prove convergence results for consenshkeprs under a stochastic
framework.

In Chapter 5 we first provided (testable)fistient conditions under which stable
consensus-based distributed linear filters can be obta8ebnd, we gave a sub-optimal,
linear filtering scheme, which can be implemented in a disted manner and is valid
for time varying communication topologies as well, and whguarantees a quantifiable
level of performance. Third, under the assumption that tbehastic matrix used in the
consensus step is doubly stochastic we showed that if aopigtely defined Markovian
jump linear system is detectable, then the stochastic psoakour interest is detectable
as well. We also showed that the optimal gains of the consebased distributed linear
filter scheme can be approximated by using the optimal lifikarfor the state estimation
of a particular Markovian jump linear system.

As future directions, an immediate extension of the resifl@hapter 2 is the gener-
alization of the convergence analysis to case where the comaation topology is mod-
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eled by a Markovian random graph. The results introducedhap@er 4 provide the
appropriate framework to this end. In Chapter 5 we proposdidteabuted algorithm for
the state estimation of a process observed by a network sbsenWhen considering
wireless networks, another relevant problem is designetgiork architectures aimed at
ensuring good estimation performance and network longeVhe problem increases in
complexity if we impose the solution to be obtained in a distted manner. Due to the
communication costs inherent to a wireless network, thevorét architecture should be
a result of a tradeg®between the need for rich communication neighborhoodshtaio-
ing accurate and stable estimates and the need for small coioation neighborhoods
for energy conservation. Our approach will consist in folating the network architec-

ture design problem as a constraint optimization problenchvis solved in a distributed

manner by the sensors. The main cost should reflect the nele\sd the sensor measure
ments for the estimation process, while the constraintsigheflect the limited energy
available for communication and the need to ensure richgméacal neighborhoods for
computing the state estimates.

As we showed in Chapters 2 and 5, the consensus problem eefses tool for
localizing algorithms in distributed computing. Importaptimization problems go be-
yond the realm oRR". For example, as we have mentioned in the introduction enaipé
trusted routing problem is formulated on thkax-plus semiringwhile the design of net-
work topology can be formulated ortlamming spaceWe plan to continue the analysis
started in Chapter 3, and formulate the consensus problesarairings, and in particular
on theMax-plusalgebra. One of our goals is to explore the feasibility ohgsionsensus

to localize the algorithms used for solving optimizatiomigems on spaces where the
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operations and relations are described byNex-plusalgebra, for example. A simple
model for a graph link is obtained by assigning to the link alban value. By stacking

all possible links, we obtain a vector whose entries can zakgone values (correspond-
ing to the existence or non-existence of links), and whighdiin a Hamming space.
As we have previously commented, designing communicatipalbgies is an important
problem in distributed optimization, estimation and coh&pplications, in particular in

the case of wireless networks for which usually the res@uare scarce. Another goal
of ours is to study the possibility of using the consensudlera formulated on Ham-

ming spaces for solving distributed optimization problentsse result should provide
a network architecture, specifically designed for a paldictask, such as estimation or

optimization.
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Appendix A
Discrete-Time Coupled Matrix Equations

A.1 Properties of a special class offdrence matrix equations

Given a positive integeN, a sequence of positive numbgrs: {pij}iszl and a set

of matrices- = {Fi}i’\il, we consider the following matrix fference equations

N
Witk+1)= )" pijFjWi(F}, Wi(0) =W, i =1...N, (A1)
=1

Additionally, consider a similar set of matrixféérence equations

N
Witk+1)= )" pjiFiWi(Fj, Wi(0) =W, i =1...N, (A.2)
=1

Proposition A.1.1. [9] The dynamics (A.1l)are asymptotically stable if and oiflthe

dynamics (A.2) are asymptotically stable.

Related to the above dynamic equations, we introduce thafivlg stabilizability

and detectability definitions.

Definition A.1.1. [10] Given a set of matrice§€ = {Ci}i'\il’ we say tha{p,L,A) is de-
tectable if there exists a set of matrides: {Li}i’\i1 such that the dynamics (A.1) is asymp-

totically stable, where F= A — L;C;, fori=1...N.

Definition A.1.2. [10] Given a set of matrice€ = {Ci}i’il, we say thatA,L,p) is stabi-
lizable, if there exists a set of matricks= {Li}i’\i1 such that the dynamics (A.1) is asymp-
totically stable, where F= Aj —CjL;, fori=1...N.
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Remark A.1.1. Given a semipositive definite matrix X and a positive defimidrix Y,

the following holds:

i=1..n T T =,
Proposition A.1.2. If there exists a set of symmetric positive definite matl{hz’ﬁ}ﬁl L such
that

Vi = pjiFiViFi+Si, (A.3)

1

N
]:

for some set of symmetric positive definite matri{&ﬁ\i 1» then the dynamics (A.1) are

asymptotically stable.

Proof. We use the same idea as in the proof of Theorem 3.19 of [11] afidedthe

following Lyapunov function

N
oK) = ) tr(Wi(kV).
i=1

In the following we show that the flerenceb(k+ 1) — ®(k) is negative for alk > 0, from

which we infer the asymptotic stability of (A.1). We get that

N N
O(k+1)—d(K) =tr [Z [Z pij Fjo(k)F;]vi —vvi(k)vi] =

i=1\j=1

N N N
= tr[ Wi(k) [Z PjiFiVi(KF - Vi|| = th(Wi KSi).
i—1 = i—1

Since{V\/i(k)}i’i , are positive semi-definite matrices foe 0 and{Si}i'\i , are positive defi-

nite, by Remark A.1.1, it follows that

d(k+1)-d(K) <0, k> 0.
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Proposition A.1.3. If there exists a set of symmetric positive definite matl{m’ﬁ}#ll such
that

N
Vi =

pijFiVjFi +Si, (A.4)
=1

for some set of symmetric positive definite matri{&ﬁ\i 1» then the dynamics (A.1) are

asymptotically stable.

Proof. Using the same approach as in the previous proposition, axeghe asymptotic

stability of the dynamics (A.2). Using Proposition A.1.4etresult follows. O

Proposition A.1.4. If the following linear matrix inequalities are feasible

Xi VPiXiFi  PF/ X - PNiF X

VPLXiFi X1 0 0

\/mxi = 0 Xo e 0 >0, (AS)
VPN XiFi 0 0 XN

fori=1...N, Where{Xi}i'\il are the unknown variables, then the dynamics (A.1) are

asymptotically stable.

Proof. By the Schur complement lemma, (A.5) are feasible if and dnly

N
Xi— > PiXiFiX;tF/X > 0, X > 0, i=1...N. (A.6)
=1
By definingV; £ X1, i =1...N, (A.6), becomes
N
Vi —ijiFiVjFi’ >0,V;>0,i=1...N.
=1

By Proposition A.1.2, (A.1) is asymptotically stable. m|
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Inspired by Proposition A.1.4, detectability and stalaibiity tests, in the sense of
Definitions A.1.1 and A.1.2, respectively, can be formudateterms of the feasibility of

a set of linear matrix inequalities.

Proposition A.1.5(detectability test) If the following matrix inequalities are feasible

X; VBLOGA - YiC)  VB(SA - YiC) - BN(XA - YiCi)
VBLOGA - YiCi)Y X 0 0
VP(XA - YiCi)’ 0 X 0 >0,
VAN (XA - YiCiY 0 0 XN

(A7)
fori=1...N, Where{Xi}i'\i1 and{Yi}i'\i1 are the unknown variables, th€p,L,A) is de-
tectable in the sense of Definition A.1.1. Moreover chosin:gxi‘lYi, fori=1...N, the

dynamics (A.1) are asymptotically stable.

Proof. By the Schur complement lemma, (A.7) are feasible if and dnly
N
X — pij(XiAi—YiCi)Xj_l(XiAi—YiCi)'>0, Xi>0,i=1...N. (A.8)
=1
By definingL; = X~1Y; andV; £ X1, i = 1...N, (A.8), becomes
N
Vi —ZpijFiVjFi’ >0,Vi>0,i=1...N.
ji=1

By Proposition A.1.3,1§,L,A) is detectable in the sense of Definition A.1.1. O
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Proposition A.1.6(stabilizability test) If the following matrix inequalities are feasible

Xi VPI(XA=CY))  VPa(XA -G - yPNi((GA -G
VP (XA - GiYi) X1 0 0
VP2 (XiA - CiYi) 0 X5 0 )
VPNi(XiA ~ CiYi) 0 0 X

(A.9)
fori=1...N, where{X;}}, and{Y;}}\, are the unknown variables, th¢A, L, p) is stabi-
lizable in the sense of Definition A.1.2. Moreover choosing MXi‘l, fori=1...N, the

dynamics (A.1) are asymptotically stable.
Proof. By the Schur complement lemma, (A.9) are feasible if and dnly

X —

N
Pji (Xi A —YiCi)'Xj_l(XiAi -YC)>0, X;>0,i=1...N. (A.10)

=1
By definingL; = X~1Y; andV; £ X1, i = 1...N, (A.10), becomes
N
Vi —ijiFi’VjFi >0,Vi>0,i=1...N.
=1

By Proposition A.1.2,1§,L,A) is stabilizable in the sense of Definition A.1.2. |

A.2 Discrete-time coupled Riccati equations

Consider the following coupled Riccatifterence equations

N
Qi(k+1)= Z pij (AjQj (A} — AjQj(KIC) (CjQj(KIC] + Zy,) 'CjQj (KA +Zw).
i=1
(A.11)
Qi(0)= Q? >0,i=1...N, where{X,, }i'\il andX,, are symmetric positive definite matrices.
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Proposition A.2.1. Let Z\%/Z = {2&/2}{11, wherex, = Z&(Z/Z&/Z. Suppose thafp,C,A) is
detectable and thgA, Eé/z,p) is stabilizable in the sense of Definitions A.1.1 and A.1.2,

respectively. Then there exists a unique set of symmetsitiy@ definite matriceé =
{QiN, satisfying
[— N [— — [— —
Q= Z Pij (AijA’j —AijC](CijC} +Zvj)_1CijA'j +EW), i=1...N. (A.12)
i=1

Moreover, for any initial conditions I@)> 0, we have thalimy_,., Qi(k) = @

Proof. The proof can be mimicked after the proof of Theorem 1 of [@)mpared to our
case, in Theorem 1 of [10], scalar terms, taking values batvweero and one, multiply
the matricesy,; in (A.12). However it is not diicult to note that the result holds even in

the case where these scalar terms take the value one, whrelsgonds to our setup.o
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